2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.1 函數(shù)及其表示方法 第2課時(shí) 函數(shù)的表示方法學(xué)案 新人教B版必修第一冊(cè)
《2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.1 函數(shù)及其表示方法 第2課時(shí) 函數(shù)的表示方法學(xué)案 新人教B版必修第一冊(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.1 函數(shù)及其表示方法 第2課時(shí) 函數(shù)的表示方法學(xué)案 新人教B版必修第一冊(cè)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第2課時(shí) 函數(shù)的表示方法 (教師獨(dú)具內(nèi)容) 課程標(biāo)準(zhǔn):1.在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖像法、列表法、解析法)表示函數(shù),理解函數(shù)圖像的作用.2.通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用. 教學(xué)重點(diǎn):函數(shù)的三種表示方法;分段函數(shù)的圖像及應(yīng)用. 教學(xué)難點(diǎn):根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù). 【情境導(dǎo)學(xué)】(教師獨(dú)具內(nèi)容) 我們已經(jīng)知道圓的面積A與半徑r之間的關(guān)系A(chǔ)=πr2是函數(shù)關(guān)系,銀行里常用的“利息表”和我國(guó)人口出生率的變化曲線也是函數(shù)關(guān)系等等,既然都是函數(shù)關(guān)系,它們的表示各有什么特征?對(duì)你解決問(wèn)題有哪些益處?學(xué)了本節(jié)知識(shí),你一定有很深的體會(huì). 【知
2、識(shí)導(dǎo)學(xué)】 知識(shí)點(diǎn)一 函數(shù)的表示方法 (1)解析法 用代數(shù)式(或解析式)來(lái)表示函數(shù)的方法稱(chēng)為解析法. (2)列表法 用列表的形式給出函數(shù)的對(duì)應(yīng)關(guān)系,這種表示函數(shù)的方法稱(chēng)為列表法. (3)圖像法 一般地,將函數(shù)y=f(x),x∈A中的自變量x和對(duì)應(yīng)的函數(shù)值y,分別看成平面直角坐標(biāo)系中點(diǎn)的橫坐標(biāo)與縱坐標(biāo),則滿足條件的點(diǎn)(x,y)組成的集合F稱(chēng)為函數(shù)的圖像,即F={(x,y)|y=f(x),x∈A}. 這就是說(shuō),如果F是函數(shù)y=f(x)的圖像,則圖像上任意一點(diǎn)的坐標(biāo)(x,y)都滿足函數(shù)關(guān)系y=f(x);反之,滿足函數(shù)關(guān)系y=f(x)的點(diǎn)(x,y)都在函數(shù)圖像F上. 用函數(shù)的圖像表示函
3、數(shù)的方法稱(chēng)為圖像法. 知識(shí)點(diǎn)二 分段函數(shù) 如果一個(gè)函數(shù),在其定義域內(nèi),對(duì)于自變量的不同取值區(qū)間,有不同的對(duì)應(yīng)方式,則稱(chēng)其為分段函數(shù). 知識(shí)點(diǎn)三 常數(shù)函數(shù) 值域只有一個(gè)元素的函數(shù),這類(lèi)函數(shù)通常稱(chēng)為常數(shù)函數(shù). 【新知拓展】 1.對(duì)函數(shù)的三種表示法的說(shuō)明 (1)列表法:采用列表法的前提是定義域內(nèi)自變量的個(gè)數(shù)較少,當(dāng)自變量的個(gè)數(shù)較多時(shí),使用不方便. (2)圖像法:圖像既可以是連續(xù)的曲線,也可以是離散的點(diǎn). (3)解析法:利用解析式表示函數(shù)的前提是變量間的對(duì)應(yīng)關(guān)系明確,且利用解析法表示函數(shù)時(shí)要注意注明其定義域. 2.關(guān)于分段函數(shù) (1)分段函數(shù)是一個(gè)函數(shù),而不是幾個(gè)函數(shù). (2
4、)研究分段函數(shù)的性質(zhì)時(shí),應(yīng)根據(jù)“先分后合”的原則,尤其是在作分段函數(shù)的圖像時(shí),可將各段的圖像分別畫(huà)出來(lái),從而得到整個(gè)函數(shù)的圖像. (3)分段函數(shù)的定義域是各段定義域的并集,其值域是各段值域的并集,寫(xiě)定義域時(shí),區(qū)間端點(diǎn)應(yīng)不重不漏. (4)求分段函數(shù)的函數(shù)值時(shí),關(guān)鍵是看自變量的取值屬于哪一段,就用哪一段的解析式求解. 3.關(guān)于函數(shù)的實(shí)際應(yīng)用問(wèn)題,在確定出函數(shù)的解析式后,不僅要注意解析式本身對(duì)自變量的限制,還要注意自變量的實(shí)際意義. 1.判一判(正確的打“√”,錯(cuò)誤的打“×”) (1)任何一個(gè)函數(shù)都可以用解析法表示.( ) (2)函數(shù)的圖像一定是定義區(qū)間上一條連續(xù)不斷的曲線.(
5、)
(3)分段函數(shù)分幾段,其圖像就有相應(yīng)的幾段.( )
答案 (1)× (2)× (3)√
2.做一做
(1)已知函數(shù)f(x)由下表給出,則f(3)等于( )
x
1≤x<2
2
2 6、式為_(kāi)_______.
答案 (1)C (2)[-1,2) (-1,1] (3)4 (4)f(x)=x+
題型一 函數(shù)的三種表示方法
例1 某商場(chǎng)新進(jìn)了10臺(tái)彩電,每臺(tái)售價(jià)3000元,試求售出臺(tái)數(shù)x(臺(tái))與收款總額y(元)之間的函數(shù)關(guān)系,分別用列表法、圖像法、解析法表示出來(lái).
[解] (1)列表法:
(2)圖像法:
(3)解析法:y=3000x,x∈{1,2,3,…,10}.
金版點(diǎn)睛
函數(shù)的表示方法
(1)解析法有兩個(gè)優(yōu)點(diǎn):一是簡(jiǎn)明、全面地概括了變量間的關(guān)系;二是可以通過(guò)解析式求出任意一個(gè)自變量的值所對(duì)應(yīng)的函數(shù)值.中學(xué)階段所研究的主要是能夠用解析式表示的函數(shù). 7、
(2)圖像法的優(yōu)點(diǎn)是能直觀形象地表示出隨自變量的變化,相應(yīng)的函數(shù)值的變化趨勢(shì),有利于我們通過(guò)圖像來(lái)研究函數(shù)的某些性質(zhì).圖像法在生產(chǎn)和生活中有許多應(yīng)用,如企業(yè)生產(chǎn)圖、股市走勢(shì)圖等.
(3)列表法的優(yōu)點(diǎn)是不需要計(jì)算就可以直接看出與自變量的值相對(duì)應(yīng)的函數(shù)值,表格法在實(shí)際生產(chǎn)和生活中也有廣泛應(yīng)用,如銀行利率表、列車(chē)時(shí)刻表等.
某問(wèn)答游戲的規(guī)則是:共5道選擇題,基礎(chǔ)分為50分,每答錯(cuò)一道題扣10分,答對(duì)不扣分,試分別用列表法、圖像法、解析法表示一個(gè)參與者的得分y與答錯(cuò)題目道數(shù)x(x∈{0,1,2,3,4,5})之間的函數(shù)關(guān)系.
解 (1)該函數(shù)關(guān)系用列表法表示為:
x/道
0 8、
1
2
3
4
5
y/分
50
40
30
20
10
0
(2)該函數(shù)關(guān)系用圖像法表示,如圖.
(3)該函數(shù)關(guān)系用解析法表示為y=50-10x(x∈{0,1,2,3,4,5}).
題型二 作函數(shù)的圖像
例2 作出下列各函數(shù)的圖像:
(1)y=1-x,x∈Z;
(2)y=x2+2x,x∈[-2,2].
[解] (1)列表:
x
…
-2
-1
0
1
2
3
…
y
…
3
2
1
0
-1
-2
…
描點(diǎn)可得這個(gè)函數(shù)的圖像由一些點(diǎn)組成,這些點(diǎn)都在直線y=1-x上,
∵x∈Z,∴y∈Z,這些點(diǎn)稱(chēng)為整 9、點(diǎn),如圖(1)所示.
(2)列表:
x
-2
-1
0
1
2
y
0
-1
0
3
8
描點(diǎn)、連線可得這個(gè)函數(shù)的圖像是拋物線y=x2+2x在-2≤x≤2之間的部分,如圖(2)所示.
金版點(diǎn)睛
作函數(shù)圖像應(yīng)注意的問(wèn)題
(1)作函數(shù)圖像主要有三步:列表、描點(diǎn)、連線.作圖像時(shí)一般應(yīng)先確定函數(shù)的定義域,再在定義域內(nèi)化簡(jiǎn)函數(shù)解析式,最后列表畫(huà)出圖像.
(2)函數(shù)的圖像可能是平滑的曲線,也可能是一群孤立的點(diǎn),畫(huà)圖時(shí)要注意關(guān)鍵點(diǎn),如圖像與坐標(biāo)軸的交點(diǎn)、區(qū)間端點(diǎn),二次函數(shù)的頂點(diǎn)等等,還要分清這些關(guān)鍵點(diǎn)是實(shí)心點(diǎn)還是空心點(diǎn).
畫(huà)出下列函數(shù)的圖像:
10、
(1)y=x+1(x≤0);
(2)y=x2-2x(x>1或x<-1).
解 (1)y=x+1(x≤0)表示一條射線,圖像如圖(1).
(2)y=x2-2x=(x-1)2-1,(x>1或x<-1)是拋物線y=x2-2x去掉-1≤x≤1之間的部分后剩余的曲線,如圖(2).
題型三 函數(shù)解析式的求法
例3 (1)已知f(x)是一次函數(shù),且f[f(x)]=9x+4,求f(x)的解析式;
(2)已知f(+1)=x+2,求f(x)的解析式.
[解] (1)設(shè)f(x)=kx+b(k≠0),
則f[f(x)]=k(kx+b)+b=k2x+kb+b=9x+4.
∴解得k=3,b=1或 11、k=-3,b=-2.
∴f(x)=3x+1或f(x)=-3x-2.
(2)解法一(配湊法):
∵f(+1)=x+2=(+1)2-1(+1≥1),
∴f(x)=x2-1(x≥1).
解法二(換元法):
令+1=t(t≥1),則x=(t-1)2(t≥1),
∴f(t)=(t-1)2+2=t2-1(t≥1).
∴f(x)=x2-1(x≥1).
金版點(diǎn)睛
求函數(shù)解析式的五種常用方法
(1)待定系數(shù)法:已知函數(shù)f(x)的函數(shù)類(lèi)型,求f(x)的解析式時(shí),根據(jù)類(lèi)型設(shè)出其解析式,確定其系數(shù)即可.
(2)換元法:即令t=g(x),解出x,代入h(x)中,得到一個(gè)含t的解析式,即為函數(shù)解析 12、式,注意:換元后新元的范圍.
(3)配湊法:已知f[g(x)]的解析式,要求f(x)時(shí),可從f[g(x)]的解析式中拼湊出“g(x)”,即用g(x)來(lái)表示f(x),再將解析式兩邊的g(x)用x代替即可.
(4)代入法:已知y=f(x)的解析式求y=f[g(x)]的解析式時(shí),可直接用新自變量g(x)替換y=f(x)中的x.
(5)方程組法:當(dāng)同一個(gè)對(duì)應(yīng)關(guān)系中的含有自變量的兩個(gè)表達(dá)式之間有互為相反數(shù)或互為倒數(shù)關(guān)系時(shí),可構(gòu)造方程組求解.
(1)已知二次函數(shù)f(x)滿足f(0)=1,f(1)=2,f(2)=5,求該二次函數(shù)的解析式;
(2)已知函數(shù)f(x+1)=x2-3x+2,求f 13、(x);
(3)已知f(+4)=x+8,求f(x2);
(4)已知函數(shù)y=f(x),滿足2f(x)+f=2x,x∈R且x≠0,求f(x).
解 (1)設(shè)二次函數(shù)的解析式為
f(x)=ax2+bx+c(a≠0),由題意,得
解得故f(x)=x2+1.
(2)解法一:令x+1=t,則x=t-1,
代入,得f(t)=(t-1)2-3(t-1)+2,
即f(t)=t2-5t+6,∴f(x)=x2-5x+6.
解法二:f(x+1)=x2-3x+2=(x+1)2-5x+1
=(x+1)2-5(x+1)+6,∴f(x)=x2-5x+6.
(3)解法一:∵f(+4)=()2+8=(+4) 14、2-16,
∴f(x)=x2-16(x≥4).
∴f(x2)=x4-16(x≥2或x≤-2).
解法二:令+4=t(t≥4),則x=(t-4)2.
∴f(t)=(t-4)2+8(t-4)=t2-16(t≥4),
即f(x)=x2-16(x≥4).
∴f(x2)=x4-16(x≥2或x≤-2).
(4)用代替x有2f+f(x)=,
所以有
①×2-②,得3f(x)=4x-,即f(x)=-(x≠0).
題型四 分段函數(shù)
例4 (1)已知函數(shù)f(x)=
①求f(2),f;
②若f(a)=3,求a的值;
(2)已知函數(shù)f(x)=
①畫(huà)出函數(shù)f(x)的圖像;
②求函數(shù)f 15、(x)的定義域和值域;
③利用圖像解不等式f(x)>x.
[解] (1)①f(2)=2×2=4,f=2=.
②當(dāng)a≤-1時(shí),f(a)=a+2,即a+2=3,
∴a=1(舍去).
當(dāng)-11時(shí),f(x)=1,所以函數(shù)f(x)的值域?yàn)閇0,1].
③由圖像,知不 16、等式f(x)>x的解集為{x|x<0}.
金版點(diǎn)睛
分段函數(shù)求值應(yīng)注意的問(wèn)題
(1)分段函數(shù)求值,一定要注意所給自變量的值所在的范圍,然后代入相應(yīng)的解析式求得,當(dāng)不明確時(shí)要分類(lèi)討論.
(2)分段函數(shù)的解析式因其特點(diǎn)可以分成兩個(gè)或兩個(gè)以上的不同解析式,所以它的圖像也由幾部分構(gòu)成,有的可以是光滑的曲線段,有的也可以是一些孤立的點(diǎn)或幾段線段,而分段函數(shù)的定義域與值域的最好的求法也是“圖像法”,分段函數(shù)的定義域是各段定義域的并集,值域是分別求出各段上的值域的并集.
(1)已知函數(shù)f(x)=則f=________;
(2)如圖所示,在邊長(zhǎng)為4的正方形ABCD上有一點(diǎn)P,沿逆時(shí)針?lè)较?/p>
17、由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動(dòng),設(shè)P點(diǎn)移動(dòng)的路程為x,△ABP的面積為y.
①根據(jù)題意寫(xiě)出y與x之間的函數(shù)解析式;
②作出函數(shù)的圖像,并根據(jù)圖像求y的最大值.
答案 (1) (2)見(jiàn)解析
解析 (1)由于≤1,所以f=-2=-,
而>1,所以f=1+2=.
所以f=.
(2)①點(diǎn)P移動(dòng),△ABP的面積隨之變化,可分點(diǎn)P落在邊BC上,CD上,DA上三種情況進(jìn)行討論,得關(guān)系式
y=
②函數(shù)的圖像如圖所示.由圖像可得ymax=8.
1.在下面四個(gè)圖中,可表示函數(shù)y=f(x)的圖像的只可能是( )
答案 D
解析 根據(jù)函數(shù)的定義,任意作出與x軸垂直的直線 18、,直線與函數(shù)圖像至多有一個(gè)交點(diǎn),因此只有D符合.
2.若f(x)=3x-4,g(x-1)=f(x),則g(x)=( )
A.3x-3 B.3x-5
C.3x-1 D.3x+4
答案 C
解析 ∵g(x-1)=3x-4=3(x-1)-1,
∴g(x)=3x-1.
3.函數(shù)y=x+的圖像是圖中的( )
答案 C
解析 ∵y=x+=畫(huà)出圖像即為C.
4.設(shè)函數(shù)f(x)=則f的值為_(kāi)_____.
答案
解析 f=,f=f=.
5.某市“招手即停”公共汽車(chē)的票價(jià)按下列規(guī)則制定:
(1)5 km以?xún)?nèi)(含5 km),票價(jià)2元;
(2)5 km以上,每增加5 km,票價(jià)增加1元(不足5 km的部分按5 km計(jì)算).
如果某條線路的總里程為20 km,請(qǐng)根據(jù)題意,寫(xiě)出票價(jià)與里程之間的函數(shù)解析式,并畫(huà)出函數(shù)的圖像.
解 設(shè)里程為x km時(shí),票價(jià)為y元.
由題意可知,自變量x的取值范圍是(0,20].由“招手即?!惫财?chē)票價(jià)的制定規(guī)則,可得函數(shù)解析式為
y=
根據(jù)這個(gè)函數(shù)的解析式,可畫(huà)出函數(shù)的圖像,如圖所示.
11
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語(yǔ)文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語(yǔ)文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版