2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 2.4二次函數(shù)與冪函數(shù)教案 理 新人教A版
《2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 2.4二次函數(shù)與冪函數(shù)教案 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 2.4二次函數(shù)與冪函數(shù)教案 理 新人教A版(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 2.4二次函數(shù)與冪函數(shù)教案 理 新人教A版 xx高考會(huì)這樣考 1.求二次函數(shù)的解析式;2.求二次函數(shù)的值域或最值,和一元二次方程、一元二次不等式進(jìn)行綜合應(yīng)用; 3.利用冪函數(shù)的圖象、性質(zhì)解決有關(guān)問題. 復(fù)習(xí)備考要這樣做 1.理解二次函數(shù)三種解析式的特征及應(yīng)用;2.分析二次函數(shù)要抓住幾個(gè)關(guān)鍵環(huán)節(jié):開口方向、對(duì)稱軸、頂點(diǎn),函數(shù)的定義域;3.充分應(yīng)用數(shù)形結(jié)合思想把握二次函數(shù)、冪函數(shù)的性質(zhì). 1. 二次函數(shù)的定義與解析式 (1)二次函數(shù)的定義 形如:f(x)=ax2+bx+c_(a≠0)的函數(shù)叫做二次函數(shù). (2)二次函數(shù)解析式的三種形式 ①一般式:
2、f(x)=ax2+bx+c_(a≠0). ②頂點(diǎn)式:f(x)=a(x-m)2+n(a≠0). ③零點(diǎn)式:f(x)=a(x-x1)(x-x2)_(a≠0). 2. 二次函數(shù)的圖象和性質(zhì) 解析式 f(x)=ax2+bx+c (a>0) f(x)=ax2+bx+c (a<0) 圖象 定義域 (-∞,+∞) (-∞,+∞) 值域 單調(diào)性 在x∈上單調(diào)遞減; 在x∈上單調(diào)遞增 在x∈上單調(diào)遞增; 在x∈上單調(diào)遞減 奇偶性 當(dāng)b=0時(shí)為偶函數(shù),b≠0時(shí)為非奇非偶函數(shù) 頂點(diǎn) 對(duì)稱性 圖象關(guān)于直線x=-成軸對(duì)稱圖形 3. 冪函數(shù) 形如
3、y=xα (α∈R)的函數(shù)稱為冪函數(shù),其中x是自變量,α是常數(shù). 4. 冪函數(shù)的圖象及性質(zhì) (1)冪函數(shù)的圖象比較 (2)冪函數(shù)的性質(zhì)比較 [難點(diǎn)正本 疑點(diǎn)清源] 1. 二次函數(shù)的三種形式 (1)已知三個(gè)點(diǎn)的坐標(biāo)時(shí),宜用一般式. (2)已知二次函數(shù)的頂點(diǎn)坐標(biāo)或與對(duì)稱軸有關(guān)或與最大(小)值有關(guān)時(shí),常使用頂點(diǎn)式. (3)已知二次函數(shù)與x軸有兩個(gè)交點(diǎn),且橫坐標(biāo)已知時(shí),選用零點(diǎn)式求f(x)更方便. 2. 冪函數(shù)的圖象 (1)在(0,1)上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越靠近x軸,在(1,+∞)上冪函數(shù)中指
4、數(shù)越大,函數(shù)圖象越遠(yuǎn)離x軸. (2)函數(shù)y=x,y=x2,y=x3,y=x,y=x-1可做為研究和學(xué)習(xí)冪函數(shù)圖象和性質(zhì)的代表. 1. 已知函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,3]上是減函數(shù),則實(shí)數(shù)a的取值范圍為 ____________. 答案 (-∞,-2] 解析 f(x)的圖象的對(duì)稱軸為x=1-a且開口向上, ∴1-a≥3,即a≤-2. 2.已知函數(shù)y=x2-2x+3在閉區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍為________. 答案 [1,2] 解析 y=x2-2x+3的對(duì)稱軸為x=1. 當(dāng)m<1時(shí),y=f(x)在[0,m]上為減函數(shù)
5、. ∴ymax=f(0)=3,ymin=f(m)=m2-2m+3=2. ∴m=1,無(wú)解. 當(dāng)1≤m≤2時(shí),ymin=f(1)=12-2×1+3=2, ymax=f(0)=3. 當(dāng)m>2時(shí),ymax=f(m)=m2-2m+3=3, ∴m=0,m=2,無(wú)解.∴1≤m≤2. 3. 若冪函數(shù)y=(m2-3m+3)xm2-m-2的圖象不經(jīng)過原點(diǎn),則實(shí)數(shù)m的值為________. 答案 1或2 解析 由,解得m=1或2. 經(jīng)檢驗(yàn)m=1或2都適合. 4. (人教A版教材例題改編) 如圖中曲線是冪函數(shù)y=xn在第一象限的圖象.已知n取±2,±四個(gè) 值,則相應(yīng)于曲線C1,C2,C3,C
6、4的n值依次為____________. 答案 2,,-,-2 解析 可以根據(jù)函數(shù)圖象是否過原點(diǎn)判斷n的符號(hào),然后根據(jù)函數(shù)凸凹性確定n的值. 5. 函數(shù)f(x)=x2+mx+1的圖象關(guān)于直線x=1對(duì)稱的充要條件是 ( ) A.m=-2 B.m=2 C.m=-1 D.m=1 答案 A 解析 函數(shù)f(x)=x2+mx+1的圖象的對(duì)稱軸為x=-,且只有一條對(duì)稱軸,所以-= 1,即m=-2. 題型一 求二次函數(shù)的解析式 例1 已知二次函數(shù)f(
7、x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,試確定此二次函數(shù). 思維啟迪:確定二次函數(shù)采用待定系數(shù)法,有三種形式,可根據(jù)條件靈活運(yùn)用. 解 方法一 設(shè)f(x)=ax2+bx+c (a≠0), 依題意有解之,得 ∴所求二次函數(shù)解析式為f(x)=-4x2+4x+7. 方法二 設(shè)f(x)=a(x-m)2+n,a≠0.∵f(2)=f(-1), ∴拋物線對(duì)稱軸為x==.∴m=. 又根據(jù)題意函數(shù)有最大值為n=8, ∴y=f(x)=a2+8. ∵f(2)=-1,∴a2+8=-1,解之,得a=-4. ∴f(x)=-42+8=-4x2+4x+7. 方法三 依題意知
8、,f(x)+1=0的兩根為 x1=2,x2=-1,故可設(shè)f(x)+1=a(x-2)(x+1),a≠0. 即f(x)=ax2-ax-2a-1. 又函數(shù)有最大值ymax=8,即=8, 解之,得a=-4或a=0(舍去). ∴函數(shù)解析式為f(x)=-4x2+4x+7. 探究提高 二次函數(shù)有三種形式的解析式,要根據(jù)具體情況選用:如和對(duì)稱性、最值有 關(guān),可選用頂點(diǎn)式;和二次函數(shù)的零點(diǎn)有關(guān),可選用零點(diǎn)式;一般式可作為二次函數(shù)的 最終結(jié)果. 已知二次函數(shù)f(x)同時(shí)滿足條件: (1)f(1+x)=f(1-x); (2)f(x)的最大值為15; (3)f(x)=0的兩根立方和等于17.
9、 求f(x)的解析式. 解 依條件,設(shè)f(x)=a(x-1)2+15 (a<0), 即f(x)=ax2-2ax+a+15. 令f(x)=0,即ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+. 而x+x=(x1+x2)3-3x1x2(x1+x2) =23-3×2×=2-, ∴2-=17,則a=-6. ∴f(x)=-6x2+12x+9. 題型二 二次函數(shù)的圖象與性質(zhì) 例2 已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6]. (1)當(dāng)a=-2時(shí),求f(x)的最值; (2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù); (3)當(dāng)a=
10、1時(shí),求f(|x|)的單調(diào)區(qū)間. 思維啟迪:對(duì)于(1)和(2)可根據(jù)對(duì)稱軸與區(qū)間的關(guān)系直接求解,對(duì)于(3),應(yīng)先將函數(shù)化為分段函數(shù),再求單調(diào)區(qū)間,注意函數(shù)定義域的限制作用. 解 (1)當(dāng)a=-2時(shí),f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6], ∴f(x)在[-4,2]上單調(diào)遞減,在[2,6]上單調(diào)遞增, ∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35. (2)由于函數(shù)f(x)的圖象開口向上,對(duì)稱軸是x=-a,所以要使f(x)在[-4,6]上是單調(diào)函 數(shù),應(yīng)有-a≤-4或-a≥6,即a≤-6或a≥4. (3)當(dāng)
11、a=1時(shí),f(x)=x2+2x+3, ∴f(|x|)=x2+2|x|+3,此時(shí)定義域?yàn)閤∈[-6,6], 且f(x)=, ∴f(|x|)的單調(diào)遞增區(qū)間是(0,6], 單調(diào)遞減區(qū)間是[-6,0]. 探究提高 (1)二次函數(shù)在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動(dòng)區(qū)間定、 軸定區(qū)間動(dòng),不論哪種類型,解決的關(guān)鍵是考查對(duì)稱軸與區(qū)間的關(guān)系,當(dāng)含有參數(shù)時(shí), 要依據(jù)對(duì)稱軸與區(qū)間的關(guān)系進(jìn)行分類討論;(2)二次函數(shù)的單調(diào)性問題則主要依據(jù)二次函數(shù)圖象的對(duì)稱軸進(jìn)行分析討論求解. 若函數(shù)f(x)=2x2+mx-1在區(qū)間[-1,+∞)上遞增,則f(-1)的取值范圍是 ____________
12、. 答案 (-∞,-3] 解析 ∵拋物線開口向上,對(duì)稱軸為x=-, ∴-≤-1,∴m≥4. 又f(-1)=1-m≤-3,∴f(-1)∈(-∞,-3]. 題型三 二次函數(shù)的綜合應(yīng)用 例3 (xx·淮安模擬)若二次函數(shù)f(x)=ax2+bx+c (a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式; (2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍. 思維啟迪:對(duì)于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,進(jìn)而確定f(x)的解析式.對(duì)于(2),可利用函數(shù)思想求得. 解 (1)
13、由f(0)=1得,c=1.∴f(x)=ax2+bx+1. 又f(x+1)-f(x)=2x, ∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x, 即2ax+a+b=2x,∴∴ 因此,f(x)=x2-x+1. (2)f(x)>2x+m等價(jià)于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函數(shù)g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可. ∵g(x)=x2-3x+1-m在[-1,1]上單調(diào)遞減, ∴g(x)min=g(1)=-m-1,由-m-1>0得,m<-1. 因此滿足條件的實(shí)數(shù)m的取值范圍是(-∞,-1)
14、. 探究提高 二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個(gè)二次”,它們常結(jié)合在一起, 而二次函數(shù)又是“三個(gè)二次”的核心,通過二次函數(shù)的圖象貫穿為一體.因此,有關(guān)二 次函數(shù)的問題,數(shù)形結(jié)合,密切聯(lián)系圖象是探求解題思路的有效方法.用函數(shù)思想研究 方程、不等式(尤其是恒成立)問題是高考命題的熱點(diǎn). (xx·蘇州模擬)已知函數(shù)f(x)=x2+mx+n的圖象過點(diǎn)(1,3),且f(-1+x)= f(-1-x)對(duì)任意實(shí)數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱. (1)求f(x)與g(x)的解析式; (2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值
15、范圍. 解 (1)∵f(x)=x2+mx+n, ∴f(-1+x)=(-1+x)2+m(-1+x)+n =x2-2x+1+mx+n-m =x2+(m-2)x+n-m+1, f(-1-x)=(-1-x)2+m(-1-x)+n =x2+2x+1-mx-m+n =x2+(2-m)x+n-m+1. 又f(-1+x)=f(-1-x),∴m-2=2-m,即m=2. 又f(x)的圖象過點(diǎn)(1,3), ∴3=12+m+n,即m+n=2, ∴n=0,∴f(x)=x2+2x, 又y=g(x)與y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱, ∴-g(x)=(-x)2+2×(-x), ∴g(x)=-x2+
16、2x. (2)∵F(x)=g(x)-λf(x)=-(1+λ)x2+(2-2λ)x, 當(dāng)λ+1≠0時(shí),F(xiàn)(x)的對(duì)稱軸為x==, 又∵F(x)在(-1,1]上是增函數(shù). ∴或. ∴λ<-1或-1<λ≤0. 當(dāng)λ+1=0,即λ=-1時(shí),F(xiàn)(x)=4x顯然在(-1,1]上是增函數(shù). 綜上所述,λ的取值范圍為(-∞,0]. 題型四 冪函數(shù)的圖象和性質(zhì) 例4 已知冪函數(shù)f(x)=xm2-2m-3 (m∈N*)的圖象關(guān)于y軸對(duì)稱,且在(0,+∞)上是減函 數(shù),求滿足(a+1)-<(3-2a)-的a的取值范圍. 思維啟迪:由冪函數(shù)的性質(zhì)可得到冪指數(shù)m2-2m-3<0,再結(jié)合m是整數(shù),及
17、冪函數(shù)是偶函數(shù)可得m的值.
解 ∵函數(shù)在(0,+∞)上遞減,
∴m2-2m-3<0,解得-1 18、、單調(diào)性.
(xx·聊城模擬)已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*)
(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;
(2)若該函數(shù)還經(jīng)過點(diǎn)(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a
的取值范圍.
解 (1)m2+m=m(m+1),m∈N*,
而m與m+1中必有一個(gè)為偶數(shù),∴m(m+1)為偶數(shù).
∴函數(shù)f(x)=x(m2+m)-1(m∈N*)的定義域?yàn)閇0,+∞),并且在定義域上為增函數(shù).
(2)∵函數(shù)f(x)經(jīng)過點(diǎn)(2,),
∴=2(m2+m)-1,即2=2(m2+m)-1.
∴m2+m=2.解得m=1或m=-2. 19、
又∵m∈N*,∴m=1.
由f(2-a)>f(a-1)得
解得1≤a<.
∴a的取值范圍為[1,).
2.分類討論思想在二次函數(shù)中的應(yīng)用
典例:(14分)設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設(shè)函數(shù)h(x)=f(x),x∈(a,+∞),直接寫出(不需給出演算步驟)不等式h(x)≥1的解集.
審題視角 (1)求a的取值范圍,是尋求關(guān)于a的不等式,解不等式即可;(2)求f(x)的最
小值,由于f(x)可化為分段函數(shù),分段函數(shù)的最值分段求,然后綜合在一起;(3)對(duì)a 20、討
論時(shí),要找到恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn).
規(guī)范解答
解 (1)因?yàn)閒(0)=-a|-a|≥1,所以-a>0,
即a<0,由a2≥1知a≤-1,
因此,a的取值范圍為(-∞,-1].[3分]
(2)記f(x)的最小值為g(a),則有
f(x)=2x2+(x-a)|x-a|
=[5分]
(ⅰ)當(dāng)a≥0時(shí),f(-a)=-2a2,
由①②知f(x)≥-2a2,此時(shí)g(a)=-2a2.[7分]
(ⅱ)當(dāng)a<0時(shí),f=a2,
若x>a,則由①知f(x)≥a2.
若x≤a,由②知f(x)≥2a2>a2.此時(shí)g(a)=a2,
綜上,得g(a)=.[10分]
(3)(ⅰ)當(dāng)a∈∪時(shí),解集為 21、(a,+∞);
(ⅱ)當(dāng)a∈時(shí),解集為;
(ⅲ)當(dāng)a∈時(shí),解集為
∪.[14分]
溫馨提醒 分類討論的思想是高考重點(diǎn)考查的數(shù)學(xué)思想方法之一.本題充分體現(xiàn)了分類討論
的思想方法.
在解答本題時(shí)有兩點(diǎn)容易造成失分:
一是求實(shí)數(shù)a的值時(shí),討論的過程中沒注意a自身的取值范圍,易出錯(cuò);二是求函數(shù)最
值時(shí),分類討論的結(jié)果不能寫在一起,不能得出最后的結(jié)論.
除此外,解決函數(shù)問題時(shí),以下幾點(diǎn)容易造成失分:
1.含絕對(duì)值的問題,去絕對(duì)值符號(hào),易出現(xiàn)計(jì)算錯(cuò)誤;
2.分段函數(shù)求最值時(shí)要分段求,最后寫在一起時(shí),沒有比較大小或不會(huì)比較大?。?
3.解一元二次不等式時(shí),不能與一元二次函數(shù)、一元二次方 22、程聯(lián)系在一起,思路受阻.
方法與技巧
1. 二次函數(shù)、二次方程、二次不等式間相互轉(zhuǎn)化的一般規(guī)律
(1)在研究一元二次方程根的分布問題時(shí),常借助于二次函數(shù)的圖象數(shù)形結(jié)合來(lái)解,一般從①開口方向;②對(duì)稱軸位置;③判別式;④端點(diǎn)函數(shù)值符號(hào)四個(gè)方面分析.
(2)在研究一元二次不等式的有關(guān)問題時(shí),一般需借助于二次函數(shù)的圖象、性質(zhì)求解.
2. 與二次函數(shù)有關(guān)的不等式恒成立問題
(1)ax2+bx+c>0,a≠0恒成立的充要條件是.
(2)ax2+bx+c<0,a≠0恒成立的充要條件是.
3. 冪函數(shù)y=xα(α∈R),其中α為常數(shù),其本質(zhì)特征是以冪的底x為自變量,指數(shù)α為常數(shù).
失誤與 23、防范
1. 對(duì)于函數(shù)y=ax2+bx+c,要認(rèn)為它是二次函數(shù),就必須滿足a≠0,當(dāng)題目條件中未說
明a≠0時(shí),就要討論a=0和a≠0兩種情況.
2. 冪函數(shù)的圖象一定會(huì)出現(xiàn)在第一象限內(nèi),一定不會(huì)出現(xiàn)在第四象限,至于是否出現(xiàn)在第
二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時(shí)出現(xiàn)在兩個(gè)象限內(nèi);如
果冪函數(shù)圖象與坐標(biāo)軸相交,則交點(diǎn)一定是原點(diǎn).
(時(shí)間:60分鐘)
A組 專項(xiàng)基礎(chǔ)訓(xùn)練
一、選擇題(每小題5分,共20分)
1. (xx·浙江)設(shè)函數(shù)f(x)=若f(α)=4,則實(shí)數(shù)α等于
( )
A.-4或-2 B. 24、-4或2
C.-2或4 D.-2或2
答案 B
解析 當(dāng)α≤0時(shí),f(α)=-α=4,得α=-4;
當(dāng)α>0時(shí),f(α)=α2=4,得α=2.∴α=-4或α=2.
2. 已知函數(shù)f(x)=x2-2x+2的定義域和值域均為[1,b],則b等于 ( )
A.3 B.2或3 C.2 D.1或2
答案 C
解析 函數(shù)f(x)=x2-2x+2在[1,b]上遞增,
由已知條件即解得b=2.
3. 設(shè)abc>0,二次函數(shù)f(x)=a 25、x2+bx+c的圖象可能是 ( )
答案 D
解析 由A,C,D知,f(0)=c<0.
∵abc>0,∴ab<0,∴對(duì)稱軸x=->0,
知A,C錯(cuò)誤,D符合要求.
由B知f(0)=c>0,∴ab>0,∴x=-<0,B錯(cuò)誤.
4. 設(shè)二次函數(shù)f(x)=ax2-2ax+c在區(qū)間[0,1]上單調(diào)遞減,且f(m)≤f(0),則實(shí)數(shù)m的取值范圍是 ( )
A.(-∞,0] B.[2 26、,+∞)
C.(-∞,0]∪[2,+∞) D.[0,2]
答案 D
解析 二次函數(shù)f(x)=ax2-2ax+c在區(qū)間[0,1]上單調(diào)遞減,則a≠0,f′(x)=2a(x-1)<0,
x∈[0,1],
所以a>0,即函數(shù)圖象的開口向上,對(duì)稱軸Δ是直線x=1.
所以f(0)=f(2),則當(dāng)f(m)≤f(0)時(shí),有0≤m≤2.
二、填空題(每小題5分,共15分)
5. 二次函數(shù)的圖象過點(diǎn)(0,1),對(duì)稱軸為x=2,最小值為-1,則它的解析式為____________.
答案 y=(x-2)2-1
6. 已知函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間 27、(-∞,3]上是減函數(shù),則實(shí)數(shù)a的取值范圍為
____________.
答案 (-∞,-2]
解析 f(x)的圖象的對(duì)稱軸為x=1-a且開口向上,
∴1-a≥3,即a≤-2.
7. 當(dāng)α∈時(shí),冪函數(shù)y=xα的圖象不可能經(jīng)過第________象限.
答案 二、四
解析 當(dāng)α=-1、1、3時(shí),y=xα的圖象經(jīng)過第一、三象限;當(dāng)α=時(shí),y=xα的圖象
經(jīng)過第一象限.
三、解答題(共25分)
8. (12分)已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且f(x)>-2x的解集為{x|1 28、x-1)(x-3) (a<0),
則f(x)=ax2-4ax+3a-2x,
f(x)+6a=ax2-(4a+2)x+9a,
Δ=[-(4a+2)]2-36a2=0,16a2+16a+4-36a2=0,
20a2-16a-4=0,5a2-4a-1=0,(5a+1)(a-1)=0,
解得a=-或a=1(舍去).
因此f(x)的解析式為f(x)=-(x-1)(x-3).
9. (13分)(xx·玉林調(diào)研)是否存在實(shí)數(shù)a,使函數(shù)f(x)=x2-2ax+a的定義域?yàn)閇-1,1]時(shí),
值域?yàn)閇-2,2]?若存在,求a的值;若不存在,說明理由.
解 f(x)=(x-a)2+a-a2.
當(dāng) 29、a<-1時(shí),f(x)在[-1,1]上為增函數(shù),
∴?a=-1(舍去);
當(dāng)-1≤a≤0時(shí),?a=-1;
當(dāng)01時(shí),f(x)在[-1,1]上為減函數(shù),
∴?a不存在.
綜上可得a=-1.
B組 專項(xiàng)能力提升
一、選擇題(每小題5分,共15分)
1. (xx·合肥調(diào)研)已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn),則f(4)的值等于
( )
A.16 B.
C.2 D.
答案 D
解析 將點(diǎn)代入得:2α=,所以α=-,
故f(4)=. 30、
2. (xx·溫州十校聯(lián)考)已知函數(shù)f(x)=2mx2-2(4-m)x+1,g(x)=mx,若對(duì)于任一實(shí)數(shù)x,
f(x)與g(x)的值至少有一個(gè)為正數(shù),則實(shí)數(shù)m的取值范圍是 ( )
A.(0,2) B.(0,8)
C.(2,8) D.(-∞,0)
答案 B
解析 當(dāng)m≤0時(shí),顯然不合題意;當(dāng)m>0時(shí),f(0)=1>0,①若對(duì)稱軸≥0,即0 31、(m-2)<0即可,即4 32、答案 f(x)=-4x2-12x+40
解析 設(shè)二次函數(shù)的解析式為f(x)=a2+49 (a≠0),方程a(x+)2+49=0的兩個(gè)
根分別為x1,x2,
則|x1-x2|=2=7,
∴a=-4,故f(x)=-4x2-12x+40.
5. 若方程x2-11x+30+a=0的兩根均大于5,則實(shí)數(shù)a的取值范圍是________.
答案 0
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案