2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理

上傳人:xt****7 文檔編號:105132432 上傳時間:2022-06-11 格式:DOC 頁數(shù):13 大?。?68.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理_第1頁
第1頁 / 共13頁
2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理_第2頁
第2頁 / 共13頁
2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)專題復(fù)習(xí) 專題六 導(dǎo)數(shù)過關(guān)提升 理 一、選擇題 1.設(shè)曲線y=ax-ln(x+1)在點(0,0)處的切線方程為y=2x,則a=(  ) A.0 B.1 C.2 D.3 2.函數(shù)y=x2-ln x的單調(diào)減區(qū)間是(  ) A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞) 3.(xx·魯迅中學(xué)模擬) 已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示,則下列說法中不正確的是(  ) A.當x=時函數(shù)取得極小值 B.f(x)有兩個極值點 C.當x=2時函數(shù)取得極小值

2、 D.當x=1時函數(shù)取得極大值 4.若0<x1<x2<1,則(  ) A.ex2-ex1>ln x2-ln x1 B.ex2-ex1<ln x2-ln x1 C.x2ex1>x1ex2 D.x2ex1<x1ex2 5.當x∈[-2,1]時,不等式ax3-x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是(  ) A.[-5,-3] B. C.[-6,-2] D.[-4,-3] 6.(xx·學(xué)軍中學(xué)模擬)設(shè)函數(shù)f(x)=+,若函數(shù)f(x)的極值點x0滿足x0f(x0)-x>m2,則實數(shù)m的取值范圍是(  ) A.(-∞,0)∪ B.(-∞,0)∪(2,+∞) C.

3、D.(0,2) 7.定義一種運算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=*(cos x,x2),設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則f′(x)的大致圖象是(  ) 8.(xx·鎮(zhèn)海中學(xué)模擬)已知定義在R上的函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),滿足g′(x)-g(x)<0,若函數(shù)g(x)的圖象關(guān)于直線x=2對稱,且g(4)=1,則不等式>1的解集為(  ) A.(-2,+∞) B.(0,+∞) C.(-∞,0) D.(-∞,2) 第Ⅱ卷(非選擇題) 二、填空題 9.曲線y=e-5x+2在點(0,3)處的切線方程為________. 10.已知函數(shù)f(x

4、)=aln x+x在區(qū)間[2,3]上單調(diào)遞增,則實數(shù)a的取值范圍是________. 11.若函數(shù)f(x)=x3-6bx+3b在(0,1)內(nèi)有極小值,則實數(shù)b的取值范圍是________. 12.設(shè)P為曲線C:f(x)=x2-x+1上的點,曲線C在點P處的切線斜率的取值范圍是[-1,3],則點P的縱坐標的取值范圍是________. 13.若函數(shù)f(x)=ln x-ax2-2x(a≠0)存在單調(diào)遞減區(qū)間,則實數(shù)a的取值范圍是______. 14.(xx·湖南高考改編)某工件的三視圖如圖所示,現(xiàn)將該工件通過切削,加工成一個體積盡可能大的長方體新工件,并使新工件的一個面

5、落在原工件的一個面內(nèi),則原工件材料的利用率為________.(材料利用率=) 15.(xx·四川高考)已知函數(shù)f(x)=2x,g(x)=x2+ax(其中a∈R).對于不相等的實數(shù)x1,x2,設(shè) m=,n=, 現(xiàn)有如下命題: ①對于任意不相等的實數(shù)x1,x2,都有m>0; ②對于任意的a及任意不相等的實數(shù)x1,x2,都有n>0; ③對于任意的a,存在不相等的實數(shù)x1,x2,使得m=n; ④對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n. 其中的真命題有________(寫出所有真命題的序號). 三、解答題 16.(xx·臺州中學(xué)模擬)已知f(x

6、)=ln x+a(1-x). (1)討論f(x)的單調(diào)性; (2)當f(x)有最大值,且最大值大于2a-2時,求a的取值范圍. 17.(xx·北京高考)設(shè)函數(shù)f(x)=-kln x,k>0. (1)求f(x)的單調(diào)區(qū)間和極值; (2)證明:若f(x)存在零點,則f(x)在區(qū)間(1,]上僅有一個零點. 18.(xx·安徽高考)設(shè)函數(shù)f(x)=x2-ax+b. (1)討論函數(shù)f(sin x)在內(nèi)的單調(diào)性并判斷有無極值,有極值時求出極值; (2)記f0(x)=x2-a0x+b0,求函數(shù)|f(sin x)-f0(sin x)|

7、在上的最大值D; (3)在(2)中,取a0=b0=0,求z=b-滿足D≤1時的最大值. 19.(xx·廣東高考)設(shè)a>1,函數(shù)f(x)=(1+x2)ex-a. (1)求f(x)的單調(diào)區(qū)間; (2)證明:f(x)在(-∞,+∞)上僅有一個零點; (3)若曲線y=f(x)在點P處的切線與x軸平行,且在點M(m,n)處的切線與直線OP平行(O是坐標原點),證明:m≤ -1. 20.(xx·嘉興一中三模)已知函數(shù)f(x)=x(ln x-ax)(a∈R),g(x)=f′(x). (1)若曲線y=f(x)在點(1,f(1))處的切線與直線3x-y-1=0平

8、行,求實數(shù)a的值; (2)若函數(shù)F(x)=g(x)+x2有兩個極值點x1,x2,且x10;當x∈(1,2)時,f′(x)<0;當x∈(2,+∞)時,f′(x)>0,所以f(x)有兩個極值點1和2

9、,且當x=2時函數(shù)取得極小值,當x=1時函數(shù)取得極大值.只有A不正確.] 4.C [A,B中構(gòu)造函數(shù)f(x)=ex-lnx, ∴f′(x)=ex-, 在(0,1)上有零點,故A,B錯;C,D中令g(x)=, ∴g′(x)==<0, ∴g(x)在(0,1)單調(diào)遞減, 又∵x2>x1, ∴,故選C.] 5.C [當x=0時,ax3-x2+4x+3≥0變?yōu)?≥0恒成立,即a∈R. 當x∈(0,1]時,ax3≥x2-4x-3,a≥, ∴a≥. 設(shè)φ(x)=, φ′(x)= =-=->0, ∴φ(x)在(0,1]上遞增,φ(x)max=φ(1)=-6. ∴a≥-6. 當x

10、∈[-2,0)時,a≤, ∴a≤. 仍設(shè)φ(x)=, φ′(x)=-. 當x∈[-2,-1)時,φ′(x)<0, 當x∈(-1,0)時,φ′(x)>0. ∴當x=-1時,φ(x)有極小值,即為最小值. 而φ(x)min=φ(-1)==-2, ∴a≤-2.綜上知-6≤a≤-2.] 6.C [由f(x)=+,得f′(x)=x-, 又x0是f(x)的極值點,∴f′(x0)=0,解之得x0=, 因此x0f(x0)-x=+m-x=, 所以>m2,解之得0

11、 又[f′(x)]′=-cos x,令-cos x=0,則x=2kπ±,k∈Z. 當00的解集為(-∞,0).] 9.5x+y-3=0 [∵y′=-5e-5x,∴k=-5×e0=-5,∴切線方程為y-

12、3=-5x,即5x+y-3=0.] 10.[-2,+∞) [∵f(x)=aln x+x.∴f′(x)=+1. 又∵f(x)在[2,3]上單調(diào)遞增,∴+1≥0在x∈[2,3]上恒成立,∴a≥(-x)max=-2,∴a∈[-2,+∞).] 11. [f′(x)=3x2-6b, 若f(x)在(0,1)內(nèi)有極小值,只需f′(0)·f′(1)<0, 即-6b·(3-6b)<0,解得0<b<.] 12. [設(shè)P(x0,y0),則f′(x)=2x-1. ∴-1≤2x0-1≤3,即0≤x0≤2. ∵y0=f(x0)=x-x0+1=+, ∵x0∈[0,2],∴≤y0≤3, 故點P的縱坐標的取

13、值范圍是.] 13.(-1,0)∪(0,+∞) [對函數(shù)f(x)求導(dǎo),得f′(x)=-(x>0).依題意,得f′(x)<0在(0,+∞)上有解,即ax2+2x-1>0在(0,+∞)上有解,∴Δ=4+4a>0且方程ax2+2x-1=0至少有一個正根,∴a>-1,又∵a≠0, ∴-10.] 14. [該三視圖對應(yīng)的幾何體為底面半徑為1,高為2的圓錐.如圖,設(shè)長方體的長、寬、高分別為a,b,c,上、下底面中心分別為O1,O2,上方截得的小圓錐的高為h,底面半徑為r,則a2+b2=4r2.由三角形相似,得=,即=,則h=2r.長方體的體積為V=abc=ab(2-2r)≤×(2-2r

14、)=2r2(2-2r)=4r2-4r3(當且僅當a=b時取等號,且00,得0

15、-g(x2), 即f(x1)-g(x1)=f(x2)-g(x2), 令h(x)=f(x)-g(x)=2x-x2-ax, 則h′(x)=2x·ln 2-2x-a, 由h′(x)=0,得2x·ln 2=2x+a,(*)結(jié)合圖象知,當a很小時,方程(*)無解,∴函數(shù)h(x)不一定有極值點,就不一定存在x1,x2使f(x1)-g(x1)=f(x2)-g(x2),不一定存在x1,x2使得m=n,故不正確; 對于④由m=-n,得f(x1)-f(x2)=g(x2)-g(x1), 即f(x1)+g(x1)=f(x2)+g(x2), 令F(x)=f(x)+g(x)=2x+x2+ax,則F′

16、(x)=2xln 2+2x+a, 由F′(x)=0,得2xln 2=-2x-a, 結(jié)合如圖所示圖象可知,該方程有解,即F(x)必有極值點,∴存在x1,x2使F(x1)=F(x2),使m=-n,故正確. 故①④正確.] 16.解 (1)f(x)的定義域為(0,+∞),f′(x)=-a. 若a≤0,則f′(x)>0,所以f(x)在(0,+∞)上單調(diào)遞增. 若a>0,則當x∈時,f′(x)>0;當x∈時,f′(x)<0.所以f(x)在上單調(diào)遞增,在上單調(diào)遞減. 綜上,當a≤0時,f(x)在(0,+∞)上單調(diào)遞增; 當a>0時,f(x)在上單調(diào)遞增,在上單調(diào)遞減. (2)由(1)知,

17、當a≤0時,f(x)在(0,+∞)無最大值; 當a>0時,f(x)在x=取得最大值,最大值為f=ln+a=-ln a+a-1. 因此f >2a-2等價于ln a+a-1<0. 令g(a)=ln a+a-1,則g(a)在(0,+∞)上單調(diào)遞增, g(1)=0. 于是,當0<a<1時,g(a)<0;當a>1時,g(a)>0. 因此,a的取值范圍是(0,1). 17.(1)解 函數(shù)的定義域為(0,+∞).由f(x)=-kln x(k>0)得 f′(x)=x-=. 由f′(x)=0解得x=(負值舍去). f(x)與f′(x)在區(qū)間(0,+∞)上的變化情況如下表: 所以,f(x

18、)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞). f(x)在x=處取得極小值f()=. (2)證明 由(1)知,f(x)在區(qū)間(0,+∞)上的最小值為f()=. 因為f(x)存在零點,所以≤0,從而k≥e, 當k=e時,f(x)在區(qū)間(1,)上單調(diào)遞減,且f()=0, 所以x=是f(x)在區(qū)間(1,]上的唯一零點. 當k>e時,f(x)在區(qū)間(0,)上單調(diào)遞減,且f(1)=>0,f()=<0, 所以f(x)在區(qū)間(1,]上僅有一個零點. 綜上可知,若f(x)存在零點,則f(x)在區(qū)間(1,]上僅有一個零點. 18.解 (1)f(sin x)=sin2 x-asin x+

19、b =sin x(sin x-a)+b,-0,-2<2sin x<2. ①a≤-2,b∈R時,函數(shù)f(sin x)單調(diào)遞增,無極值. ②a≥2,b∈R時,函數(shù)f(sin x)單調(diào)遞減,無極值. ③對于-2

20、x≤時,|f(sin x)-f0(sin x)|=|(a0-a)sin x+b-b0|≤|a-a0|+|b-b0|. 當(a0-a)(b-b0)≥0時,取x=,等號成立. 當(a0-a)(b-b0)<0時,取x=-,等號成立. 由此可知,|f(sin x)-f0(sin x)|在上的最大值為D=|a-a0|+ |b-b0|. (3)D≤1即為|a|+|b|≤1,此時0≤a2≤1,-1≤b≤1, 從而z=b-≤1. 取a=0,b=1,則|a|+|b|≤1,并且z=b-=1. 由此可知,z=b-滿足條件D≤1的最大值為1. 19.(1)解 f′(x)=2xex+(1+x2)ex=

21、(x2+2x+1)ex =(x+1)2ex,?x∈R,f′(x)≥0恒成立. ∴f(x)的單調(diào)增區(qū)間為(-∞,+∞). (2)證明 ∵f(0)=1-a,f(a)=(1+a2)ea-a, ∵a>1,∴f(0)<0,f(a)>2aea-a>2a-a=a>0, ∴f(0)·f(a)<0, ∴f(x)在(0,a)上有一零點,又∵f(x)在(-∞,+∞)上遞增, ∴f(x)在(0,a)上僅有一個零點, ∴f(x)在(-∞,+∞)上僅有一個零點. (3)證明 f′(x)=(x+1)2ex,設(shè)P(x0,y0),則f′(x0)=ex0(x0+1)2=0,∴x0=-1, 把x0=-1,代入y

22、=f(x)得y0=-a, ∴kOP=a-. f′(m)=em(m+1)2=a-, 令g(m)=em-(m+1),g′(m)=em-1. 令g′(x)>0,則m>0,∴g(m)在(0,+∞)上增. 令g′(x)<0,則m<0,∴g(m)在(-∞,0)上減. ∴g(m)min=g(0)=0. ∴em-(m+1)≥0,即em≥m+1. ∴em(m+1)2≥(m+1)3,即a-≥(m+1)3. ∴m+1≤ ,即m≤ -1. 20.(1)解 ∵f′(x)=ln x-ax+x=ln x-2ax+1, ∴f′(1)=1-2a, 因為3x-y-1=0的斜率為3. 依題意,得1-2a=

23、3,則a=-1. (2)證明 因為F(x)=g(x)+x2=ln x-2ax+1+x2, 所以F′(x)=-2a+x=(x>0), 函數(shù)F(x)=g(x)+x2有兩個極值點x1,x2且x10,∴∴a>1. 當0x2時,h(x)>0,F(xiàn)′(x)>0. 當x1

24、=0,得a=, ∴f(x)=x(ln x-ax)=xln x-x3-x, 則f′(x)=ln x-x2+, 設(shè)s(x)=ln x-x2+,s′(x)=-3x=, ①當x>1時,s′(x)<0,s(x)在(1,+∞)上單調(diào)遞減,從而函數(shù)s(x)在(a,+∞)上單調(diào)遞減, ∴s(x)0,得0f(1)=-1, ∵x1∈(0,1),從而有f(x1)>-1. 綜上可知:f(x2)<-1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲