2022年高三數學第一輪復習單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版
《2022年高三數學第一輪復習單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版》由會員分享,可在線閱讀,更多相關《2022年高三數學第一輪復習單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版(17頁珍藏版)》請在裝配圖網上搜索。
1、2022年高三數學第一輪復習單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版 一.課標要求: 1.由方程研究曲線,特別是圓錐曲線的幾何性質問題常化為等式解決,要加強等價轉化思想的訓練; 2.通過圓錐曲線與方程的學習,進一步體會數形結合的思想; 3.了解圓錐曲線的簡單應用。 二.命題走向 近年來圓錐曲線在高考中比較穩(wěn)定,解答題往往以中檔題或以押軸題形式出現(xiàn),主要考察學生邏輯推理能力、運算能力,考察學生綜合運用數學知識解決問題的能力。但圓錐曲線在新課標中化歸到選學內容,要求有所降低,估計xx年高考對本講的考察,仍將以以下三類題型為主。 1.求曲線(或軌跡)的方程,對于這
2、類問題,高考常常不給出圖形或不給出坐標系,以考察學生理解解析幾何問題的基本思想方法和能力; 2.與圓錐曲線有關的最值問題、參數范圍問題,這類問題的綜合型較大,解題中需要根據具體問題、靈活運用解析幾何、平面幾何、函數、不等式、三角知識,正確的構造不等式或方程,體現(xiàn)了解析幾何與其他數學知識的聯(lián)系。 預測07年高考: 1.出現(xiàn)1道復合其它知識的圓錐曲線綜合題; 2.可能出現(xiàn)1道考查求軌跡的選擇題或填空題,也可能出現(xiàn)在解答題中間的小問。 三.要點精講 1.曲線方程 (1)求曲線(圖形)方程的方法及其具體步驟如下: 步 驟 含 義 說 明 1、“建”:建立
3、坐標系;“設”:設動點坐標。 建立適當的直角坐標系,用(x,y)表示曲線上任意一點M的坐標。 (1) 所研究的問題已給出坐標系,即可直接設點。 (2) 沒有給出坐標系,首先要選取適當的坐標系。 2、現(xiàn)(限):由限制條件,列出幾何等式。 寫出適合條件P的點M的集合P={M|P(M)} 這是求曲線方程的重要一步,應仔細分析題意,使寫出的條件簡明正確。 3、“代”:代換 用坐標法表示條件P(M),列出方程f(x,y)=0 常常用到一些公式。 4、“化”:化簡 化方程f(x,y)=0為最簡形式。 要注意同解變形。 5、證明 證明化簡以后的方程的解為坐標的點都是曲線上的點。
4、 化簡的過程若是方程的同解變形,可以不要證明,變形過程中產生不增根或失根,應在所得方程中刪去或補上(即要注意方程變量的取值范圍)。 這五個步驟(不包括證明)可濃縮為五字“口訣”:建設現(xiàn)(限)代化” (2)求曲線方程的常見方法: 直接法:也叫“五步法”,即按照求曲線方程的五個步驟來求解。這是求曲線方程的基本方法。 轉移代入法:這個方法又叫相關點法或坐標代換法。即利用動點是定曲線上的動點,另一動點依賴于它,那么可尋求它們坐標之間的關系,然后代入定曲線的方程進行求解。 幾何法:就是根據圖形的幾何性質而得到軌跡方程的方法。 參數法:根據題中給定的軌跡條件,用一個參數來分別動點的坐標,間接地
5、把坐標x,y聯(lián)系起來,得到用參數表示的方程。如果消去參數,就可以得到軌跡的普通方程。 2.圓錐曲線綜合問題 (1)圓錐曲線中的最值問題、范圍問題 通常有兩類:一類是有關長度和面積的最值問題;一類是圓錐曲線中有關的幾何元素的最值問題。這些問題往往通過定義,結合幾何知識,建立目標函數,利用函數的性質或不等式知識,以及觀形、設參、轉化、替換等途徑來解決。解題時要注意函數思想的運用,要注意觀察、分析圖形的特征,將形和數結合起來。 圓錐曲線的弦長求法: 設圓錐曲線C∶f(x,y)=0與直線l∶y=kx+b相交于A(x1,y1)、B(x2,y2)兩點,則弦長|AB|為: 若弦AB過圓錐曲線
6、的焦點F,則可用焦半徑求弦長,|AB|=|AF|+|BF|. 在解析幾何中求最值,關鍵是建立所求量關于自變量的函數關系,再利用代數方法求出相應的最值.注意點是要考慮曲線上點坐標(x,y)的取值范圍。 (2)對稱、存在性問題,與圓錐曲線有關的證明問題 它涉及到線段相等、角相等、直線平行、垂直的證明方法,以及定點、定值問題的判斷方法。 (3)實際應用題 數學應用題是高考中必考的題型,隨著高考改革的深入,同時課本上也出現(xiàn)了許多與圓錐曲線相關的實際應用問題,如橋梁的設計、探照燈反光鏡的設計、聲音探測,以及行星、人造衛(wèi)星、彗星運行軌道的計算等。 涉及與圓錐曲線有關的應用問題的解決關鍵
7、是建立坐標系,合理選擇曲線模型,然后轉化為相應的數學問題作出定量或定性分析與判斷,解題的一般思想是: (4)知識交匯題 圓錐曲線經常和數列、三角、平面向量、不等式、推理知識結合到一塊出現(xiàn)部分有較強區(qū)分度的綜合題。 四.典例解析 題型1:求軌跡方程 例1.(1)一動圓與圓外切,同時與圓內切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線。 (2)雙曲線有動點,是曲線的兩個焦點,求的重心的軌跡方程。 解析:(1)(法一)設動圓圓心為,半徑為,設已知圓的圓心分別為、, 將圓方程分別配方得:,, 當與相切時,有 ① 當與相切時,有
8、 ② 將①②兩式的兩邊分別相加,得, 即 ③ 移項再兩邊分別平方得: ④ 兩邊再平方得:, 整理得, 所以,動圓圓心的軌跡方程是,軌跡是橢圓。 (法二)由解法一可得方程, 由以上方程知,動圓圓心到點和的距離和是常數,所以點的軌跡是焦點為、,長軸長等于的橢圓,并且橢圓的中心在坐標原點,焦點在軸上, ∴,,∴,, ∴, ∴圓心軌跡方程為。 (2)如圖,設點坐標各為,∴在已知雙曲線方程中,∴ ∴已知雙曲線兩焦點為, ∵存在,∴ 由三角形重心坐標公式有,即 。 ∵,∴。 已知點在雙曲線上,將上面結果代入已知曲線方程,有 即所求
9、重心的軌跡方程為:。 點評:定義法求軌跡方程的一般方法、步驟;“轉移法”求軌跡方程的方法。 例2.(xx上海,3)設P為雙曲線y2=1上一動點,O為坐標原點,M為線段OP的中點,則點M的軌跡方程是 。 解析:(1)答案:x2-4y2=1 設P(x0,y0) ∴M(x,y) ∴ ∴2x=x0,2y=y(tǒng)0 ∴-4y2=1x2-4y2=1 點評:利用中間變量法(轉移法)是求軌跡問題的重要方法之一。 題型2:圓錐曲線中最值和范圍問題 例3.(1)設AB是過橢圓中心的弦,橢圓的左焦點為,則△F1AB的面積最大為( ) A. B.
10、C. D. (2)已知雙曲線的左右焦點分別為F1,F(xiàn)2,點P在雙曲線的右支上,且,則此雙曲線的離心率的最大值是( ) A. B. C. 2 D. (3)已知A(3,2)、B(-4,0),P是橢圓上一點,則|PA|+|PB|的最大值為( ) A. 10 B. C. D. 解析:(1)如圖,由橢圓對稱性知道O為AB的中點,則△F1OB的面積為△F1AB面積的一半。又,△F1OB邊OF1上的高為,而的最大值是b,所以△F1OB的面積最大值為。所以△F1AB的面積最大值為cb。 點評:抓
11、住△F1AB中為定值,以及橢圓是中心對稱圖形。 (2)解析:由雙曲線的定義, 得:, 又,所以,從而 由雙曲線的第二定義可得, 所以。又,從而。故選B。 點評:“點P在雙曲線的右支上”是銜接兩個定義的關鍵,也是不等關系成立的條件。利用這個結論得出關于a、c的不等式,從而得出e的取值范圍。 (3)解析:易知A(3,2)在橢圓內,B(-4,0)是橢圓的左焦點(如圖),則右焦點為F(4,0)。連PB,PF。由橢圓的定義知: , 所以。 由平面幾何知識, ,即, 而, 所以。 點評:由△PAF成立的條件,再延伸到特
12、殊情形P、A、F共線,從而得出這一關鍵結論。 例4.(1)(06全國1文,21)設P是橢圓短軸的一個端點,為橢圓上的一個動點,求的最大值。 (2)(06上海文,21)已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點. ①求該橢圓的標準方程; ②若是橢圓上的動點,求線段中點的軌跡方程; ③過原點的直線交橢圓于點,求面積的最大值。 (3)(06山東文,21)已知橢圓的中心在坐標原點O,焦點在x軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,兩準線間的距離為l。 (Ⅰ)求橢圓的方程; (Ⅱ)直線過點P(0,2)且與橢圓相交于A、B兩點,當ΔAOB面積取得最
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應急處置程序和方法
- 某物業(yè)公司冬季除雪工作應急預案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設備設施故障應急預案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內容、方法和要求
- 物業(yè)管理制度:安全防范十大應急處理預案
- 物業(yè)公司巡查、檢查工作內容、方法和要求
- 某物業(yè)公司保潔部門領班總結
- 某公司安全生產舉報獎勵制度
- 物業(yè)管理:火情火災應急預案
- 某物業(yè)安保崗位職責
- 物業(yè)管理制度:節(jié)前工作重點總結
- 物業(yè)管理:某小區(qū)消防演習方案
- 某物業(yè)公司客服部工作職責