2022年高考數學一輪復習 4.2 函數與方程教案 新課標

上傳人:xt****7 文檔編號:105285413 上傳時間:2022-06-11 格式:DOC 頁數:4 大?。?54.02KB
收藏 版權申訴 舉報 下載
2022年高考數學一輪復習 4.2 函數與方程教案 新課標_第1頁
第1頁 / 共4頁
2022年高考數學一輪復習 4.2 函數與方程教案 新課標_第2頁
第2頁 / 共4頁
2022年高考數學一輪復習 4.2 函數與方程教案 新課標_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數學一輪復習 4.2 函數與方程教案 新課標》由會員分享,可在線閱讀,更多相關《2022年高考數學一輪復習 4.2 函數與方程教案 新課標(4頁珍藏版)》請在裝配圖網上搜索。

1、2022年高考數學一輪復習 4.2 函數與方程教案 新課標 【知識歸納】 1.函數零點的定義: 方程有實根函數圖象與軸有交點函數有零點。 2.函數變號零點與不變號零點(二重零點)性質: (1)定理:如果函數在區(qū)間上的圖象是連續(xù)不間斷的一條曲線,并且有那么函數在區(qū)間內有零點,即存在,使得,這個也就是方程的實數根。 (2)變號了一定有零點(能證明f(x)單調則有且只有一個零點);不變號不一定無零點(如二重零點):在相鄰兩個零點之間所有的函數值保持同號。 3.怎樣求零點:即為求解方程的根? 解一:利用計算器或計算機作的對應值表、若在區(qū)間上連續(xù),并且有,那么函數在區(qū)間內至少有一個實數根

2、、若能證明在單調性,則在有且只有一個零點、再在其它區(qū)間內同理去尋找。 解二:試探著找到兩個x對應值為一正一負(至少有一個);再證單調增函數即可得有且只有一個。 解三:構造兩個易畫函數,畫圖,看圖象交點個數,很實用。 4.用二分法求函數零點近似值的步驟: 在給定精確度,用二分法求函數零點的近似值的步驟是: (1)確定區(qū)間,驗證,給定精確度; (2)求區(qū)間的中點; (3)計算: ①若=0,則c就是函數的零點,計算終止; ②若,則令b=c(此時零點); ③若則令a=c(此時零點。(用列表更清楚) (4).判斷是否達到精確度:即若,則得到零點近似值;否則重復(2)~(4)。 說

3、明:用二分法求函數的零點近似值的方法僅對函數的變號零點適合,對函數的不變號零點不使用;用二分法求函數的零點近似值必須用上節(jié)的三種方法之一先求出零點所在的區(qū)間。 【典型例題】 一、確定零點的個數 例1.(1)二次函數中,,則函數的零點個數是( ) A.1個 B.2個 C.0個 D.無法確定 分析:分析條件,是二次項系數,確定拋物線的開口方向,,所以,由此得解。 解:因為,所以,即與異號,即或 所以函數必有兩個零點,故選B。 (2)函數的零點個數為_______。 解:可由試根法求得的一根為,從而可得,由函數的零點個數為3個。

4、 例2. 函數的零點所在的大致區(qū)間是( ) A.(1,2) B.(2,3) C.和(3,4) D. 分析:從已知的區(qū)間,求和,判斷是否有。 解:因為,故在(1,2)內沒有零點,非A。 又,所以,所以在(2,3)內有一個零點,選B。 例2.下列函數中,在區(qū)間[1,2]上有零點的是 ①②③ ④⑤ 解析:①直接求出x=1,符合 ②首先判斷一元二次函數的零點個數,通過求所對應方程判別式的大小:△<0,無零點 ③△>0,且,零點 ④即判斷與的交點情況,需要畫圖,并判斷交點所在區(qū)間 ⑤同理,判斷與的交點情況 答案①③⑤

5、 例4. 試證明函數在上有且僅有一個零點。 證明:且, 而函數在區(qū)間上是連續(xù)不斷的 在區(qū)間內有零點。 又,在上是一個單調遞增函數。如果函數有不僅一個的零點,可設為它的兩個不等的零點,則有,這與在上是一個單調遞增函數矛盾,函數在上有且僅有一個零點。 二、求函數零點的近似值 例5.求方程在區(qū)間內的實數解。( 精確到0.01) 解:考察函數由于,函數在內存在零點,即方程在區(qū)間內有解。取[0,2]的中點1, 方程在[1,2]內有解,又所以在區(qū)間存在零點,方程在[1,1.5]內有解,如此下去,取區(qū)間作為計算器的初始區(qū)間。用二分法逐次計算列表如下: 區(qū)間中點坐標 中點函數值 取區(qū)間

6、 0.5 1.25 0.25 1.375 0.125 1.3125 0.0625 1.34375 0.03125 1.328125 0.015625 1.3203125 0.0078125 ,至此可以看出,函數的零點落在區(qū)間長度小于0.01的區(qū)間內,因為該區(qū)間的所有值精確到0.01的都是1.32,所以1.32是函數精確到0.01的一個近似零點。 例6.已知二次函數的圖象以原點為頂點且過點,反比例函數的圖象與直線的兩個交點間距離為8, (1)求函數的表達式。 (2)證明:當時,關于的方程有三個實數解。

7、 解:(1) (2)由得,即:,在同一坐標系作出和的大致圖象,其中的圖象是以坐標軸為漸近線,且位于第一、三象限的雙曲線,的圖象是以為頂點,開口向下的拋物線。因此,與的圖象在第三象限有一個交點。即有一個負數解。 又,當時, 當時,在第一象限的圖象上存在一點在圖象的上方。 與的圖象在第一象限有兩個交點,即有兩個正數解。因此,方程有三個實數解。 方法二:由得,因式分解為:,即:或,又不是的根,故可化為:,只須證明和不是的根,且具有兩個不等的實根。 【作業(yè)】 1.已知關于的方程-2= 0有實數解,求實數的取值范圍。 答案:0≤≤4- 2.已知二次函數 (1)若,且,試證明

8、必有兩個零點。 (2)若對于且,,方程有兩個不等的實根,證明必有一實根屬于。 證明:(1) 又,即, 又,方程有兩個不等實根,所以函數有兩個實根。 (2)令, 則, , 在內必有一實根,即在內必有一實根。 3.已知關于x的二次函數. (1)求證:對于任意,方程必有實數根; (2)若,求證:方程在區(qū)間上各有一個實數根. (1)由知必有實數根. 或由得必有實數根. (2)當時,因為,, , 所以方程在區(qū)間上各有一個實數根. 4.已知,t∈[,8],對于f(t)值域內的所有實數m,不等式恒成立,求x的取值范圍。 解析∵t∈[,8],∴f(t)∈[,3] 原題轉化為:>0恒成立,為m的一次函數(這里思維的轉化很重要) 當x=2時,不等式不成立。 ∴x≠2。令g(m)=,m∈[,3] 問題轉化為g(m)在m∈[,3]上恒對于0,則:; 解得:x>2或x<-1 評析:首先明確本題是求x的取值范圍,這里注意另一個變量m,不等式的左邊恰是m的一次函數,因此依據一次函數的特性得到解決。在多個字母變量的問題中,選準“主元”往往是解題的關鍵。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲