2022年高考數(shù)學(xué)二輪專題復(fù)習(xí) 立體幾何教案
《2022年高考數(shù)學(xué)二輪專題復(fù)習(xí) 立體幾何教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪專題復(fù)習(xí) 立體幾何教案(15頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)二輪專題復(fù)習(xí) 立體幾何教案 一、本章知識(shí)結(jié)構(gòu): 二、重點(diǎn)知識(shí)回顧 1、空間幾何體的結(jié)構(gòu)特征 (1)棱柱、棱錐、棱臺(tái)和多面體 棱柱是由滿足下列三個(gè)條件的面圍成的幾何體:①有兩個(gè)面互相平行;②其余各面都是四邊形;③每相鄰兩個(gè)四邊形的公共邊都互相平行;棱柱按底面邊數(shù)可分為:三棱柱、四棱柱、五棱柱等.棱柱性質(zhì):①棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都相等; ②棱柱的兩個(gè)底面與平行于底面的截面是對(duì)應(yīng)邊互相平行的全等多邊形. ③過棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形. 棱錐是由一個(gè)底面是多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形所圍成的幾何體.棱錐具有以下性質(zhì)
2、:①底面是多邊形;②側(cè)面是以棱錐的頂點(diǎn)為公共點(diǎn)的三角形;③平行于底面的截面和底面是相似多邊形,相似比等于從頂點(diǎn)到截面和從頂點(diǎn)到底面距離的比.截面面積和底面面積的比等于上述相似比的平方. 棱臺(tái)是棱錐被平行于底面的一個(gè)平面所截后,截面和底面之間的部分.由棱臺(tái)定義可知,所有側(cè)棱的延長(zhǎng)線交于一點(diǎn),繼而將棱臺(tái)還原成棱錐. 多面體是由若干個(gè)多邊形圍成的幾何體.多面體有幾個(gè)面就稱為幾面體,如三棱錐是四面體. ?。?)圓柱、圓錐、圓臺(tái)、球 分別以矩形的一邊,直角三角形的一直角邊,直角梯形垂直于底邊的腰所在的直線,半圓以它的直徑所在直線為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周而形成的幾何體叫做圓柱、圓錐、圓臺(tái)、球 圓柱
3、、圓錐和圓臺(tái)的性質(zhì)主要有:①平行于底面的截面都是圓;②過軸的截面(軸截面)分別是全等的矩形、等腰三角形、等腰梯形;③圓臺(tái)的上底變大到與下底相同時(shí),可以得到圓柱;圓臺(tái)的上底變小為一點(diǎn)時(shí),可以得到圓錐. 2、空間幾何體的側(cè)面積、表面積 ?。?)棱柱側(cè)面展開圖的面積就是棱柱的側(cè)面積,棱柱的表面積就是它的側(cè)面積與兩底面面積的和. 因?yàn)橹崩庵母鱾€(gè)側(cè)面都是等高的矩形,所以它的展開圖是以棱柱的底面周長(zhǎng)與高分別為長(zhǎng)和寬的矩形.如果設(shè)直棱柱底面周長(zhǎng)為,高為,則側(cè)面積. 若長(zhǎng)方體的長(zhǎng)、寬、高分別是a、b、c,則其表面積. (2)圓柱的側(cè)面展開圖是一個(gè)矩形.矩形的寬是圓柱母線的長(zhǎng),矩形的長(zhǎng)為
4、圓柱底面周長(zhǎng).如果設(shè)圓柱母線的長(zhǎng)為,底面半徑為r,那么圓柱的側(cè)面積,此時(shí)圓柱底面面積.所以圓柱的表面積. ?。?)圓錐的側(cè)面展開圖是以其母線為半徑的扇形.如果設(shè)圓錐底面半徑為r,母線長(zhǎng)為,則側(cè)面積,那么圓錐的表面積是由其側(cè)面積與底面面積的和構(gòu)成,即為. ?。?)正棱錐的側(cè)面展開圖是個(gè)全等的等腰三角形.如果正棱錐的周長(zhǎng)為,斜高為,則它的側(cè)面積. ?。?)正棱臺(tái)的側(cè)面積就是它各個(gè)側(cè)面積的和.如果設(shè)正棱臺(tái)的上、下底面的周長(zhǎng)是,斜高是,那么它的側(cè)面積是. ?。?)圓臺(tái)側(cè)面展開圖是以截得該圓臺(tái)的圓錐母線為大圓半徑,圓錐與圓臺(tái)的母線之差為小圓半徑的一個(gè)扇環(huán).如果設(shè)圓臺(tái)的上、下底面半徑分別為
5、,母線長(zhǎng)為,那么它的側(cè)面積是. 圓臺(tái)的表面積等于它的側(cè)面積與上、下底面積的和, 即. ?。?)球的表面積,即球的表面積等于其大圓面積的四倍. 3、空間幾何體的體積 ?。?)柱體(棱柱、圓柱)的體積等于它的底面積和高的積,即.其中底面半徑是,高是的圓柱的體積是. (2)如果一個(gè)錐體(棱錐、圓錐)的底面積是,高是,那么它的體積是.其中底面半徑是,高是的圓錐的體積是,就是說,錐體的體積是與其同底等高柱體體積的. ?。?)如果臺(tái)體(棱臺(tái)、圓臺(tái))的上、下底面積分別是,高是,那么它的體積是.其中上、下底半徑分別是,高是的圓臺(tái)的體積是. (4)球的體積公式:. 4、中心投影和平行
6、投影 (1)中心投影:投射線均通過投影中心的投影。 (2)平行投影:投射線相互平行的投影。 (3)三視圖的位置關(guān)系與投影規(guī)律 三視圖的位置關(guān)系為:俯視圖在主視圖的下方、左視圖在主視圖的右方. 三視圖之間的投影規(guī)律為: 主、俯視圖———長(zhǎng)對(duì)正;主、左視圖———高平齊;俯、左視圖———寬相等. 5、直觀圖畫法 斜二測(cè)畫法的規(guī)則: (1)在空間圖形中取互相垂直的x軸和y軸,兩軸交于O點(diǎn),再取z軸,使90°,且90°. ?。?)畫直觀圖時(shí)把它們畫成對(duì)應(yīng)的軸、軸和軸,它們相交于,并使45°, 90°。 ?。?)已知圖形中平行于x軸、y軸或z軸的線段,在直觀圖中分別畫成平行于軸、
7、軸和軸的線段. ?。?)已知圖形中平行于x軸和z軸的線段,在直觀圖中長(zhǎng)度相等;平行于y軸的線段,長(zhǎng)度取一半. 6.平面 (1)對(duì)平面的理解 平面是一個(gè)不加定義、只須理解的最基本的原始概念. 立體幾何中的平面是理想的、絕對(duì)平且無限延展的模型,平面是無大小、厚薄之分的.類似于我們以前學(xué)的直線,它可以無限延伸,它是不可度量的. (2)對(duì)公理的剖析 1)公理1的內(nèi)容反映了直線與平面的位置關(guān)系,公理1的條件“線上不重合的兩點(diǎn)在平面內(nèi)”是公理的必要條件,結(jié)論是“線上所有點(diǎn)都在面內(nèi)”.這個(gè)結(jié)論闡述了兩個(gè)觀點(diǎn):一是整條直線在平面內(nèi);二是直線上所有點(diǎn)在平面內(nèi). 其作用是:可判定直線是否在平
8、面內(nèi)、點(diǎn)是否在平面內(nèi). 2)公理2中的“有且只有一個(gè)”的含義要準(zhǔn)確理解.這里的“有”是說圖形存在,“只有一個(gè)”是說圖形唯一,確定一個(gè)平面中的“確定”是“有且只有”的同義詞,也是指存在性和唯一性這兩方面.這個(gè)術(shù)語今后也會(huì)常常出現(xiàn),要理解好. 其作用是:一是確定平面;二是證明點(diǎn)、線共面. 3)公理3的內(nèi)容反映了平面與平面的位置關(guān)系,它的條件簡(jiǎn)而言之是“兩面共一點(diǎn)”,結(jié)論是“兩面共一線,且過這一點(diǎn),線唯一”.對(duì)于本公理應(yīng)強(qiáng)調(diào)對(duì)于不重合的兩個(gè)平面,只要它們有公共點(diǎn),它們就是相交的位置關(guān)系,交集是一條直線. 其作用是:其一它是判定兩個(gè)平面是否相交的依據(jù),只要兩個(gè)平面有一個(gè)公共點(diǎn),就可以判定這兩個(gè)
9、平面必相交于過這點(diǎn)的一條直線;其二它可以判定點(diǎn)在直線上,點(diǎn)是兩個(gè)平面的公共點(diǎn),線是這兩個(gè)平面的公共交線,則這點(diǎn)在交線上. 7. 空間直線. (1)空間直線位置分三種:相交、平行、異面. 相交直線—共面有且有一個(gè)公共點(diǎn);平行直線—共面沒有公共點(diǎn);異面直線—不同在任一平面內(nèi)。 (2)異面直線判定定理:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線) (3)平行公理:平行于同一條直線的兩條直線互相平行. (4)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等 推論:如果兩條相交直線和另兩條相交直線分
10、別平行,那么這兩組直線所成銳角(或直角)相等. 8. 直線與平面平行、直線與平面垂直. (1)空間直線與平面位置分三種:相交、平行、在平面內(nèi). (2)直線與平面平行判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行.(“線線平行,線面平行”) (3)直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.(“線面平行,線線平行”) (4)直線與平面垂直是指直線與平面任何一條直線垂直,過一點(diǎn)有且只有一條直線和一個(gè)平面垂直,過一點(diǎn)有且只有一個(gè)平面和一條直線垂直. 直線與平面垂直判定定理:如果一條直線和
11、一個(gè)平面內(nèi)的兩條相交直線垂直,則這條直線與這個(gè)平面垂直。 推論:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行. 9. 平面平行與平面垂直. (1)空間兩個(gè)平面的位置關(guān)系:相交、平行. (2)平面平行判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,哪么這兩個(gè)平面平行.(“線面平行,面面平行”) 推論:垂直于同一條直線的兩個(gè)平面互相平行;平行于同一平面的兩個(gè)平面平行. (3)兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平面平行同時(shí)和第三個(gè)平面相交,那么它們交線平行.(“面面平行,線線平行”) (4)兩個(gè)平面垂直性質(zhì)判定一:兩個(gè)平面所成的二面角是直二面角,則兩個(gè)平面垂直. 兩個(gè)平面
12、垂直性質(zhì)判定二:如果一個(gè)平面與一條直線垂直,那么經(jīng)過這條直線的平面垂直于這個(gè)平面.(“線面垂直,面面垂直”) (5)兩個(gè)平面垂直性質(zhì)定理:如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線也垂直于另一個(gè)平面. 10. 空間向量. (1)a.共線向量:共線向量亦稱平行向量,指空間向量的有向線段所在直線互相平行或重合. (2)空間向量基本定理:如果三個(gè)向量不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使. 推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對(duì)空間任一點(diǎn)P, 都存在唯一的有序?qū)崝?shù)組x、y、z使 (這里隱含x+y+z≠1). (3)a.空間向量的坐標(biāo):空間直角坐
13、標(biāo)系的x軸是橫軸(對(duì)應(yīng)為橫坐標(biāo)),y軸是縱軸(對(duì)應(yīng)為縱軸),z軸是豎軸(對(duì)應(yīng)為豎坐標(biāo)). ①令=(a1,a2,a3),,則 ,, , ∥ 。 。 (用到常用的向量模與向量之間的轉(zhuǎn)化: ) 空間兩個(gè)向量的夾角公式 (a=,b=)。 ②空間兩點(diǎn)的距離公式:. b.法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果那么向量叫做平面的法向量. c.用向量的常用方法: ①利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到平面的距離為. ②.異面直線間的距離 (是兩異面直線,其公垂向量為,分別是上任一點(diǎn),為間
14、的距離). ③.點(diǎn)到平面的距離 (為平面的法向量,是經(jīng)過面的一條斜線,). ④直線與平面所成角(為平面的法向量). ⑤利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補(bǔ)角大?。ǚ较蛳嗤?,則為補(bǔ)角,反方,則為其夾角). 二面角的平面角或(,為平面,的法向量). 三、考點(diǎn)剖析 考點(diǎn)一:空間幾何體的結(jié)構(gòu)、三視圖、直觀圖 【內(nèi)容解讀】了解柱、錐、臺(tái)、球體及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中的簡(jiǎn)單物體的結(jié)構(gòu)。能畫出簡(jiǎn)單空間幾何體的三視圖,能識(shí)別上述三視圖所表示的立體模型,會(huì)用斜二測(cè)畫法畫出它們的直觀圖。能用平行投影與中心
15、投影兩種方法畫出簡(jiǎn)單空間幾何體的三視圖與直觀圖。了解空間幾何體的不同表示形式。會(huì)畫某建筑物的視圖與直觀圖。 空間幾何體的結(jié)構(gòu)與視圖主要培養(yǎng)觀察能力、歸納能力和空間想象能力,能通過觀察幾何體的模型和實(shí)物,總結(jié)出柱、錐、臺(tái)、球等幾何體的結(jié)構(gòu)特征;能識(shí)別三視圖所表示的空間幾何體,會(huì)用材料制作模型,培養(yǎng)動(dòng)手能力。 【命題規(guī)律】柱、錐、臺(tái)、球體及其簡(jiǎn)單組合體的結(jié)構(gòu)特征在舊教材中出現(xiàn)過,而三視圖為新增內(nèi)容,一般情況下,新增內(nèi)容會(huì)重點(diǎn)考查,從xx年、xx年廣東、山東、海南的高考題來看,三視圖是出題的熱點(diǎn),題型多以選擇題、填空題為主,也有出現(xiàn)在解答題里,如xx年廣東高考就出現(xiàn)在解答題里,屬中等偏易題。
16、例1、(xx廣東)將正三棱柱截去三個(gè)角(如圖1所示分別是三邊的中點(diǎn))得到幾何體如圖2,則該幾何體按圖2所示方向的側(cè)視圖(或稱左視圖)為( ) E F D I A H G B C E F D A B C 側(cè)視 圖1 圖2 B E A. B E B. B E C. B E D. 解:在圖2的右邊放扇墻(心中有墻),可得答案A 點(diǎn)評(píng):本題主要考查三視圖中的左視圖,要有一定的空間想象能力。 例2、(xx江蘇模擬)由大小相同的正方體木塊堆成的幾何體的三視圖如圖所示,則該幾何體中正方體木塊的個(gè)數(shù)是 .
17、左視圖 主視圖 俯視圖 解:以俯視圖為主,因?yàn)橹饕晥D左邊有兩層,表示俯視圖中左邊最多有兩個(gè)木塊,再看左視圖,可得木塊數(shù)如右圖所示,因此這個(gè)幾何體的正方體木塊數(shù)的個(gè)數(shù)為5個(gè)。 點(diǎn)評(píng):從三視圖到確定幾何體,應(yīng)根據(jù)主視圖和俯視圖情況分析,再結(jié)合左視圖的情況定出幾何體,最后便可得出這個(gè)立體體組合的小正方體個(gè)數(shù)。 考點(diǎn)二:空間幾何體的表面積和體積 【內(nèi)容解讀】理解柱、錐、臺(tái)的側(cè)面積、表面積、體積的計(jì)算方法,了解它們的側(cè)面展開圖,及其對(duì)計(jì)算側(cè)面積的作用,會(huì)根據(jù)條件計(jì)算表面積和體積。理解球的表面積和體積的計(jì)算方法。 把握平面圖形與立體圖形間的相互轉(zhuǎn)化方法,并
18、能綜合運(yùn)用立體幾何中所學(xué)知識(shí)解決有關(guān)問題。 【命題規(guī)律】柱、錐、臺(tái)、球的表面積和體積以公式為主,按照新課標(biāo)的要求,體積公式不要求記憶,只要掌握表面積的計(jì)算方法和體積的計(jì)算方法即可。因此,題目從難度上講屬于中檔偏易題。 例3、(xx廣東)已知某幾何體的俯視圖是如圖5所示的矩形,正視圖(或稱主 視圖)是一個(gè)底邊長(zhǎng)為8、高為4的等腰三角形,側(cè)視圖(或稱左視 圖)是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形. (1)求該幾何體的體積V; (2)求該幾何體的側(cè)面積S 解: 由已知可得該幾何體是一個(gè)底面為矩形,高為4,頂點(diǎn)在底面的射影是矩形中心的四棱錐V-ABCD。 (1) (2) 該
19、四棱錐有兩個(gè)側(cè)面VAD. VBC是全等的等腰三角形,且BC邊上的高為 , 另兩個(gè)側(cè)面VAB. VCD也是全等的等腰三角形, AB邊上的高為 因此 俯視圖 正(主)視圖 側(cè)(左)視圖 2 3 2 2 點(diǎn)評(píng):在課改地區(qū)的高考題中,求幾何體的表面積與體積的問題經(jīng)常與三視圖的知識(shí)結(jié)合在一起,綜合考查。 例4、(xx山東)右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是( ) A. B. C. D. 解:從三視圖可以看出該幾何體是由一個(gè)球和一個(gè)圓柱組合而成的簡(jiǎn)單幾何體, 其表面及為: ,故選D。 點(diǎn)評(píng):本小題主要考查三
20、視圖與幾何體的表面積。既要能識(shí)別簡(jiǎn)單幾何體的結(jié)構(gòu)特征,又要掌握基本幾何體的表面積的計(jì)算方法。 例5、(湖北卷3)用與球心距離為的平面去截球,所得的截面面積為,則球的體積為( ?。? A. B. C. D. 解:截面面積為截面圓半徑為1,又與球心距離為球的半徑是, 所以根據(jù)球的體積公式知,故B為正確答案. 點(diǎn)評(píng):本題考查球的一些相關(guān)概念,球的體積公式的運(yùn)用。 考點(diǎn)三:點(diǎn)、線、面的位置關(guān)系 【內(nèi)容解讀】理解空間中點(diǎn)、線、面的位置關(guān)系,了解四個(gè)公理及其推論;空間兩直線的三種位置關(guān)系及其判定;異面直線的定義及其所成角的求法。
21、 通過大量圖形的觀察、實(shí)驗(yàn),實(shí)現(xiàn)平面圖形到立體圖形的飛躍,培養(yǎng)空間想象能力。會(huì)用平面的基本性質(zhì)證明共點(diǎn)、共線、共面的問題。 【命題規(guī)律】主要考查平面的基本性質(zhì)、空間兩條直線的位置關(guān)系,多以選擇題、填空題為主,難度不大。 圖1 例6、如圖1,在空間四邊形ABCD中,點(diǎn)E、H分別是邊AB、AD的中點(diǎn),F(xiàn)、G分別是邊BC、CD上的點(diǎn),且==,則( ) (A)EF與GH互相平行 (B)EF與GH異面 (C)EF與GH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上 (D)EF與GH的交點(diǎn)M一定在直線AC上 解:依題意,可得EH∥BD,F(xiàn)G∥BD,故EH∥FG,由公理2可知,E、F、G
22、、H共面,因?yàn)镋H=BD,=,故EH≠FG,所以,EFGH是梯形,EF與GH必相交,設(shè)交點(diǎn)為M,因?yàn)辄c(diǎn)M在EF上,故點(diǎn)M在平面ACB上,同理,點(diǎn)M在平面ACD上,即點(diǎn)M是平面ACB與平面ACD的交點(diǎn),而AC是這兩個(gè)平面的交線,由公理3可知,點(diǎn)M一定在平面ACB與平面ACD的交線AC上。 選(D)。 點(diǎn)評(píng):本題主要考查公理2和公理3的應(yīng)用,證明共線問題。利用四個(gè)公理來證明共點(diǎn)、共線的問題是立體幾何中的一個(gè)難點(diǎn)。 例7、(xx全國二10)已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為( ) A. B. C. D. 解:連接AC、BD交于O,連接OE,因O
23、E∥SD.所以∠AEO為異面直線SD與AE所成的角。設(shè)側(cè)棱長(zhǎng)與底面邊長(zhǎng)都等于2,則在⊿AEO中,OE=1,AO=,AE=, 于是,故選C。 點(diǎn)評(píng):求異面直線所成的角,一般是平移異面直線中的一條與另一條相交構(gòu)成三角形,再用三角函數(shù)的方法或正、余弦定理求解。 考點(diǎn)四:直線與平面、平面與平面平行的判定與性質(zhì) 【內(nèi)容解讀】掌握直線與平面平行、平面與平面平行的判定與性質(zhì)定理,能用判定定理證明線面平行、面面平行,會(huì)用性質(zhì)定理解決線面平行、面面平行的問題。 通過線面平行、面面平行的證明,培養(yǎng)學(xué)生空間觀念及及觀察、操作、實(shí)驗(yàn)、探索、合情推理的能力。 【命題規(guī)律】主要考查線線、面面平行的判定與性質(zhì),
24、多以選擇題和解答題形式出現(xiàn),解答題中多以證明線面平行、面面平行為主,屬中檔題。 例8、(xx安徽)如圖,在四棱錐中,底面四邊長(zhǎng)為1的菱形,, , ,為的中點(diǎn),為的中點(diǎn) (Ⅰ)證明:直線; (Ⅱ)求異面直線AB與MD所成角的大小; (Ⅲ)求點(diǎn)B到平面OCD的距離。 方法一:(1)證明:取OB中點(diǎn)E,連接ME,NE 又 (2) 為異面直線與所成的角(或其補(bǔ)角) 作連接 , 所以 與所成角的大小為 (3)點(diǎn)A和點(diǎn)B到平面OCD的距離相等,連接OP,過點(diǎn)A作 于點(diǎn)Q, 又 ,線段AQ的長(zhǎng)就是點(diǎn)A到平面OCD的距離 ,
25、 ,所以點(diǎn)B到平面OCD的距離為 方法二(向量法) 作于點(diǎn)P,如圖,分別以AB,AP,AO所在直線為軸建立坐標(biāo)系 , (1) 設(shè)平面OCD的法向量為,則 即 取,解得 (2)設(shè)與所成的角為, , 與所成角的大小為 (3)設(shè)點(diǎn)B到平面OCD的交流為,則為在向量上的投影的絕對(duì)值, 由 , 得.所以點(diǎn)B到平面OCD的距離為 點(diǎn)評(píng):線面平行的證明、異面直線所成的角,點(diǎn)到直線的距離,既可以用綜合方法求解,也可以用向量方法求解,后者較簡(jiǎn)便,但新課標(biāo)地區(qū)文科沒學(xué)空間向量。 例9、(xx江蘇模擬)一個(gè)多面體的直觀圖和三視圖如圖所示,其中M、N分別是A
26、B、AC的中點(diǎn),G是DF上的一動(dòng)點(diǎn). (1)求證: (2)當(dāng)FG=GD時(shí),在棱AD上確定一點(diǎn)P,使得GP//平面FMC,并給出證明. 證明:由三視圖可得直觀圖為直三棱柱且底面ADF中AD⊥DF,DF=AD=DC (1)連接DB,可知B、N、D共線,且AC⊥DN 又FD⊥AD FD⊥CD, FD⊥面ABCD FD⊥AC AC⊥面FDN GN⊥AC (2)點(diǎn)P在A點(diǎn)處 證明:取DC中點(diǎn)S,連接AS、GS、GA G是DF的中點(diǎn),GS//FC,AS//CM 面GSA//面FMC
27、 GA//面FMC 即GP//面FMC 點(diǎn)評(píng):證明線面平行,在平面內(nèi)找一條直線與平面外的直線平行,是證明線面平行的關(guān)鍵。 考點(diǎn)五:直線與平面、平面與平面垂直的判定與性質(zhì) 【內(nèi)容解讀】掌握直線與平面垂直、平面與平面垂直的判定與性質(zhì)定理,能用判定定理證明線線垂直、線面垂直、面面垂直,會(huì)用性質(zhì)定理解決線面垂直、面面垂直的問題。 通過線面垂直、面面垂直的證明,培養(yǎng)學(xué)生空間觀念及及觀察、操作、實(shí)驗(yàn)、探索、合情推理的能力。 【命題規(guī)律】主要考查線線、面面垂直的判定與性質(zhì),多以選擇題和解答題形式出現(xiàn),解答題中多以證明線線垂直、線面垂直、面面垂直為主,屬中檔題。 例10、(xx廣東五校聯(lián)
28、考)正方體ABCD—A1B1C1D1中O為正方形ABCD的中心,M為BB1的中點(diǎn),求證: (1)D1O//平面A1BC1; (2)D1O⊥平面MAC. 證明: (1)連結(jié)分別交于 在正方體中,對(duì)角面為矩形 分別是的中點(diǎn) 四邊形為平行四邊形 平面,平面平面 (2)連結(jié),設(shè)正方體的棱長(zhǎng)為, 在正方體中,對(duì)角面為矩形且 分別是的中點(diǎn) 在中, ,即 在正方體中 平面 又, 平面 平面 又 平面 A B C D E P 點(diǎn)評(píng):證明線面垂直,關(guān)鍵是在平面內(nèi)找到兩條相
29、交直線與已知直線垂直,由線線垂直推出線面垂直,證明線線垂直有時(shí)要用勾股定理的逆定理. 例11、(xx廣東中山模擬)如圖,四棱錐P—ABCD中, PA平面ABCD,底面ABCD是直角梯形,AB⊥AD, CD⊥AD,CD=2AB,E為PC中點(diǎn). (I) 求證:平面PDC平面PAD; (II) 求證:BE//平面PAD. 證明:(1)由PA平面ABCD A B C D E P F 平面PDC平面PAD; (2)取PD中點(diǎn)為F,連結(jié)EF、AF,由E為PC中點(diǎn), 得EF為△PDC的中位線,則EF//CD,CD=2EF.
30、 又CD=2AB,則EF=AB.由AB//CD,則EF∥AB. 所以四邊形ABEF為平行四邊形,則EF//AF. 由AF面PAD,則EF//面PAD. 點(diǎn)評(píng):證明面面垂直,先證明線面垂直,要證線面垂直,先證明線線垂直. 例12、(xx廣東深圳模擬)如圖,四棱錐的底面是正方形,底面,是上一點(diǎn). (1)求證:平面平面; (2)設(shè),,求點(diǎn)到平面的距離; (1)證明:底面 且 平面平面 (2)解:因?yàn)?,且? 可求得點(diǎn)到平面的距離為 點(diǎn)評(píng):求點(diǎn)到面的距離,經(jīng)常采用等體積法,利用同一個(gè)幾何體,體積相等,體現(xiàn)了轉(zhuǎn)化思想. 考點(diǎn)六:空間向量 【內(nèi)容
31、解讀】用空間向量解決立體幾何問題的“三步曲” ?。?)用空間向量表示問題中涉及的點(diǎn)、直線、平面,建立立體圖形與空間向量的聯(lián)系,從而把立體幾何問題轉(zhuǎn)化為向量問題(幾何問題向量化); (2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間的距離和夾我有等問題(進(jìn)行向量運(yùn)算); ?。?)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義(回歸幾何問題). 【命題規(guī)律】空間向量的問題一般出現(xiàn)在立體幾何的解答題中,難度為中等偏難. 例13、如圖1,直三棱柱中,, ,棱分別是的中點(diǎn). 求的長(zhǎng); 求的值. 解:如圖1,建立空間直角坐標(biāo)系. (1
32、)依題意, 得,. (2)依題意,得, . . . 點(diǎn)評(píng):本題主要考查了空間向量的概念及坐標(biāo)運(yùn)算的基本知識(shí),考查了空間兩向量的夾角、長(zhǎng)度的計(jì)算公式.解題的關(guān)鍵是恰當(dāng)?shù)亟⒖臻g直角坐標(biāo)系和準(zhǔn)確地表示點(diǎn)的坐標(biāo) 例14、如圖2,在四棱錐,底面為矩形,底面,是上一點(diǎn),.已知. 求:(1)異面直線與的距離; (2)二面角的大?。? 解:以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系, 并設(shè),則. ?。?),,解得. ,即, 又,故是異面直線與的公垂線. 而,即異面直線與的距離為1. (2)作,并設(shè), ,且,
33、 則,可?。? 再作于,并設(shè), ,且,則, 又?。? 由,,可知與的夾角就是所求二面角的大小, ,即所求二面角為. 點(diǎn)評(píng):向量法求二面角是一種獨(dú)特的方法,因?yàn)樗坏莻鹘y(tǒng)方法的有力補(bǔ)充,而且還可以另辟溪徑,解決傳統(tǒng)方法難以解決的求二面角問題.向量法求二面角通常有以下三種轉(zhuǎn)化方式:①先作、證二面角的平面角,再求得二面角的大小為;②先求二面角兩個(gè)半平面的法向量(注意法向量的方向要分布在二面角的內(nèi)外),再求得二面角的大小為或其補(bǔ)角;③先分別在二面角兩個(gè)半平面內(nèi)作棱的垂線(垂足不重合),又可轉(zhuǎn)化為求兩條異面直線的夾角. 例15、 如圖,已知正三棱柱,是的中點(diǎn),求證:
34、平面. 證明:建立如圖所示的空間直角坐標(biāo)系.設(shè)正三棱柱的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,則, ,. 設(shè)平面的一個(gè)法向量為, 則所以 不妨令,則. 由于,得. 又平面,平面. 點(diǎn)評(píng):平面的法向量是空間向量的一個(gè)重要概念,它在解決立體幾何的許多問題中都有很好的應(yīng)用. 四、方法總結(jié)與xx年高考預(yù)測(cè) (一)方法總結(jié) 1.位置關(guān)系: (1)兩條異面直線相互垂直 證明方法:①證明兩條異面直線所成角為90o;②證明線面垂直,得到線線垂直;③證明兩條異面直線的方向量相互垂直。 (2)直線和平面相互平行 證明方法:①證明直線和這個(gè)平面內(nèi)的一條直線相互平行;②證明這條直線的方向量和這個(gè)平
35、面內(nèi)的一個(gè)向量相互平行;③證明這條直線的方向量和這個(gè)平面的法向量相互垂直。 (3)直線和平面垂直 證明方法:①證明直線和平面內(nèi)兩條相交直線都垂直,②證明直線的方向量與這個(gè)平面內(nèi)不共線的兩個(gè)向量都垂直;③證明直線的方向量與這個(gè)平面的法向量相互平行。 (4)平面和平面相互垂直 證明方法:①證明這兩個(gè)平面所成二面角的平面角為90o;②證明一個(gè)平面內(nèi)的一條直線垂直于另外一個(gè)平面;③證明兩個(gè)平面的法向量相互垂直。 2.求距離: 求距離的重點(diǎn)在點(diǎn)到平面的距離,直線到平面的距離和兩個(gè)平面的距離可以轉(zhuǎn)化成點(diǎn)到平面的距離,一個(gè)點(diǎn)到平面的距離也可以轉(zhuǎn)化成另外一個(gè)點(diǎn)到這個(gè)平面的距離。 (1)兩條異面直
36、線的距離 求法:利用公式法。 (2)點(diǎn)到平面的距離 求法:①“一找二證三求”,三步都必須要清楚地寫出來。②等體積法。③向量法。 3.求角 (1)兩條異面直線所成的角 求法:①先通過其中一條直線或者兩條直線的平移,找出這兩條異面直線所成的角,然后通過解三角形去求得;②通過兩條異面直線的方向量所成的角來求得,但是注意到異面直線所成角得范圍是,向量所成的角范圍是,如果求出的是鈍角,要注意轉(zhuǎn)化成相應(yīng)的銳角。 (2)直線和平面所成的角 求法:①“一找二證三求”,三步都必須要清楚地寫出來。②向量法,先求直線的方向量于平面的法向量所成的角α,那么所要求的角為或。 (3)平面與平面所成的角
37、 求法:①“一找二證三求”,找出這個(gè)二面角的平面角,然后再來證明我們找出來的這個(gè)角是我們要求的二面角的平面角,最后就通過解三角形來求。②向量法,先求兩個(gè)平面的法向量所成的角為α,那么這兩個(gè)平面所成的二面角的平面角為α或π-α。 (二)xx年高考預(yù)測(cè) 從近幾年各地高考試題分析,立體幾何題型一般是一個(gè)解答題,1至3個(gè)填空或選擇題.解答題一般與棱柱和棱錐相關(guān),主要考查線線關(guān)系、線面關(guān)系和面面關(guān)系,其重點(diǎn)是考查空間想象能力和推理運(yùn)算能力,其解題方法一般都有二種以上,并且一般都能用空間向量來求解.?高考試題中,立體幾何側(cè)重考查學(xué)生的空間概念、邏輯思維能力、空間想象能力及運(yùn)算能力?.?近幾年凡涉及空
38、間向量應(yīng)用于立體幾何的高考試題,都著重考查應(yīng)用空間向量求異面直線所成的角、二面角,證明線線平行、線面平行和證明異面直線垂直和線面垂直等基本問題。 高考對(duì)立體幾何的考查側(cè)重以下幾個(gè)方面: 1.從命題形式來看,涉及立體幾何內(nèi)容的命題形式最為多變?.?除保留傳統(tǒng)的“四選一”的選擇題型外,還嘗試開發(fā)了“多選填空”、“完型填空”、“構(gòu)造填空”等題型,并且這種命題形式正在不斷完善和翻新;解答題則設(shè)計(jì)成幾個(gè)小問題,此類考題往往以多面體為依托,第一小問考查線線、線面、面面的位置關(guān)系,后面幾問考查空間角、空間距離、面積、體積等度量關(guān)系,其解題思路也都是“作——證——求”,強(qiáng)調(diào)作圖、證明和計(jì)算相結(jié)合。
39、 2.從內(nèi)容上來看,主要是:①考查直線和平面的各種位置關(guān)系的判定和性質(zhì),這類試題一般難度不大,多為選擇題和填空題;②計(jì)算角的問題,試題中常見的是異面直線所成的角,直線與平面所成的角,平面與平面所成的二面角,這類試題有一定的難度和需要一定的解題技巧,通常要把它們轉(zhuǎn)化為相交直線所成的角;③求距離,試題中常見的是點(diǎn)與點(diǎn)之間的距離,點(diǎn)到直線的距離,點(diǎn)到平面的距離,直線與直線的距離,直線到平面的距離,要特別注意解決此類問題的轉(zhuǎn)化方法;④簡(jiǎn)單的幾何體的側(cè)面積和表面積問題,解此類問題除特殊幾何體的現(xiàn)成的公式外,還可將側(cè)面展開,轉(zhuǎn)化為求平面圖形的面積問題;⑤體積問題,要注意解題技巧,如等積變換、割補(bǔ)思想的應(yīng)
40、用。⑥三視圖,辨認(rèn)空間幾何體的三視圖,三視圖與表面積、體積內(nèi)容相結(jié)合。 3.從能力上來看,著重考查空間想象能力,即空間形體的觀察分析和抽象的能力,要求是“四會(huì)”:①會(huì)畫圖——根據(jù)題設(shè)條件畫出適合題意的圖形或畫出自己想作的輔助線(面),作出的圖形要直觀、虛實(shí)分明;②會(huì)識(shí)圖——根據(jù)題目給出的圖形,想象出立體的形狀和有關(guān)線面的位置關(guān)系;③會(huì)析圖——對(duì)圖形進(jìn)行必要的分解、組合;④會(huì)用圖——對(duì)圖形或其某部分進(jìn)行平移、翻折、旋轉(zhuǎn)、展開或?qū)嵭懈钛a(bǔ)術(shù);考查邏輯思維能力、運(yùn)算能力和探索能力。 五、復(fù)習(xí)建議 1、三視圖是新課標(biāo)新增的內(nèi)容,xx、xx年課改區(qū)的高考題都有體現(xiàn),因此,三視圖的內(nèi)容應(yīng)重點(diǎn)訓(xùn)練。
41、2.證明空間線面平行與垂直,是必考題型,解題時(shí)要由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證明思路. 3.空間圖形中的角與距離,先根據(jù)定義找出或作出所求的角與距離,然后通過解三角形等方法求值,注意“作、證、算”的有機(jī)統(tǒng)一.解題時(shí)注意各種角的范圍.異面直線所成角的范圍是0°<θ≤90°,其方法是平移法和補(bǔ)形法;直線與平面所成角的范圍是0°≤θ≤90°,其解法是作垂線、找射影;二面角0°≤θ≤180°。 4.與幾何體的側(cè)面積和體積有關(guān)的計(jì)算問題,根據(jù)基本概念和公式來計(jì)算,要重視方程的思想和割補(bǔ)法、等積轉(zhuǎn)換法的運(yùn)用 5.平面圖形的翻折與空間圖形的展開問題,要對(duì)照翻折(或展開)前后兩個(gè)圖形,分清哪些元素的位置(或數(shù)量)關(guān)系改變了,哪些沒有改變.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績(jī)效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩