2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí)

上傳人:xt****7 文檔編號:105446303 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?7.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí)_第1頁
第1頁 / 共7頁
2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí)_第2頁
第2頁 / 共7頁
2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí) 一、選擇題 1.已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點(diǎn)A,B,則|AB|等于(  ) A.3    B.4     C.3     D.4 [解析] 設(shè)直線AB的方程為y=x+b,A(x1,y1),B(x2,y2),由?x2+x+b-3=0?x1+x2=-1,得AB的中點(diǎn)M. 又M在直線x+y=0上,可求出b=1, 則|AB|=·=3. [答案] C 2.(xx·泰安模擬)斜率為的直線與雙曲線-=1(a>0,b>0)恒有兩個公共點(diǎn),則雙曲線離心率的取值范圍是(  ) A.[2

2、,+∞) B.(2,+∞) C.(1,) D.(,+∞) [解析] 因?yàn)樾甭蕿榈闹本€與雙曲線-=1恒有兩個公共點(diǎn),所以>,所以e==>=2. 所以雙曲線離心率的取值范圍是(2,+∞). [答案] B 3.(xx·西安模擬)已知任意k∈R,直線y-kx-1=0與橢圓+=1(m>0)恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  ) A.(0,1) B.(0,5) C.[1,5)∪(5,+∞) D.[1,5) [解析] 直線y=kx+1過定點(diǎn)(0,1),只要(0,1)在橢圓+=1上或其內(nèi)部即可.從而m≥1,又因?yàn)闄E圓+=1中m≠5,所以m的取值范圍是[1,5)∪(5,+∞). [答

3、案] C 4.(xx·衡水模擬)若雙曲線-=1(a>0,b>0)與橢圓+=1(m>b>0)的離心率之積等于1,則以a,b,m為邊長的三角形一定是(  ) A.等腰三角形 B.直角三角形 C.銳角三角形 D.鈍角三角形 [解析] 設(shè)雙曲線離心率為e1,橢圓離心率為e2, 所以e1= ,e2= , 故e1·e2= =1 ?(m2-a2-b2)b2=0,即a2+b2-m2=0, 所以,以a,b,m為邊長的三角形為直角三角形. [答案] B 5.(xx·嘉定模擬)過點(diǎn)P(1,1)作直線與雙曲線x2-=1交于A,B兩點(diǎn),使點(diǎn)P為AB中點(diǎn),則這樣的直線(  ) A.存在一

4、條,且方程為2x-y-1=0 B.存在無數(shù)條 C.存在兩條,方程為2x±(y+1)=0 D.不存在 [解析] 設(shè)A(x1,y1),B(x2,y2),則x1+x2=2,y1+y2=2,則x- y=1,x- y=1, 兩式相減得(x1-x2)(x1+x2)- (y1-y2)(y1+y2)=0,所以x1-x2= (y1-y2),即kAB=2, 故所求直線方程為y-1=2(x-1),即2x-y-1=0. 聯(lián)立 可得2x2-4x+3=0,但此方程沒有實(shí)數(shù)解,故這樣的直線不存在.故選D. [答案] D 6.(xx·杭州模擬)F為橢圓+y2=1的右焦點(diǎn),第一象限內(nèi)的點(diǎn)M在橢圓上,若MF⊥

5、x軸,直線MN與圓x2+y2=1相切于第四象限內(nèi)的點(diǎn)N,則|NF|等于(  ) A. B. C. D. [解析] 因?yàn)镸F⊥x軸,F(xiàn)為橢圓+y2=1的右焦點(diǎn),所以F(2,0),M,設(shè)lMN:y-=k(x-2), N(x,y),則O到lMN的距離d==1,解得k=(負(fù)值舍去). 又因?yàn)? 即N,所以|NF|==. [答案] A 二、填空題 7.已知兩定點(diǎn)M(-2,0),N(2,0),若直線上存在點(diǎn)P,使得|PM|-|PN|=2,則稱該直線為“A型直線”,給出下列直線:①y=x+1;②y=x+2;③y=-x+3;④y=-2x.其中是“A型直線”的序號是______

6、__. [解析] 由條件知考慮給出直線與雙曲線x2-=1右支的交點(diǎn)情況,作圖易知①③直線與雙曲線右支有交點(diǎn),故填①③. [答案]?、佗? 8.(xx·無錫模擬)若直線mx+ny=4與⊙O:x2+y2=4沒有交點(diǎn),則過點(diǎn)P(m,n)的直線與橢圓+=1的交點(diǎn)個數(shù)是________. [解析] 由題意知:>2,即<2,所以點(diǎn)P(m,n)在橢圓+=1的內(nèi)部,故所求交點(diǎn)個數(shù)是2個. [答案] 2 9.已知雙曲線左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為其右支上一點(diǎn),∠F1PF2=60°,且S△F1PF2=2,若|PF1|,|F1F2|2,|PF2|成等差數(shù)列,則該雙曲線的離心率為________.

7、[解析] 設(shè)|PF1|=m,|PF2|=n(m>n),雙曲線方程為-=1(a>0,b>0),因此有m-n=2a,|F1F2|=2c,S△PF1F2=·m·n·=2,m·n=8. 又m+n=×4c2=2c2?(m+n)2=4c4.① 由余弦定理cos∠F1PF2= ==?m2+n2=8+4c2 ?(m+n)2=4c2+24.② ①②兩式聯(lián)立解得c2=3?c=, 所以,??2a=2,a=1,e==. [答案]  三、解答題 10.(xx·衡水模擬)在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b≥1)的離心率e=,且橢圓C上一點(diǎn)N到點(diǎn)Q(0,3)的距離最大值為4,過點(diǎn)M(3,

8、0)的直線交橢圓C于點(diǎn)A,B. (1)求橢圓C的方程. (2)設(shè)P為橢圓上一點(diǎn),且滿足+=t(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<時,求實(shí)數(shù)t的取值范圍. [解] (1)因?yàn)閑2===,所以a2=4b2, 則橢圓方程為+=1,即x2+4y2=4b2. 設(shè)N(x,y),則|NQ| == ==. 當(dāng)y=-1時,|NQ|有最大值為=4, 解得b2=1,所以a2=4,橢圓方程是+y2=1. (2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0), AB方程為y=k(x-3),由 整理得(1+4k2)x2-24k2x+36k2-4=0. 由Δ=(24k2)2-16(9k2-1)(

9、1+4k2)>0,得k2<. x1+x2=,x1·x2=. 所以+=(x1+x2,y1+y2)=t(x0,y0), 則x0=(x1+x2)=,y0=(y1+y2) =[k(x1+x2)-6k]=. 由點(diǎn)P在橢圓上,得+=4, 化簡得36k2=t2(1+4k2)① 又由|AB|=|x1-x2|<,即(1+k2)[(x1+x2)2-4x1x2]<3,將x1+x2,x1x2代入得 (1+k2)<3, 化簡,得(8k2-1)(16k2+13)>0, 則8k2-1>0,k2>, 所以<k2<② 由①,得t2==9-, 聯(lián)立②,解得3<t2<4, 所以-2<t<-或<t<2.

10、 11.(xx·石家莊模擬)橢圓+=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),過F1作與x軸不重合的直線l交橢圓于A、B兩點(diǎn). (1)若△ABF2為正三角形,求橢圓的離心率; (2)若橢圓的離心率滿足0<e<,O為坐標(biāo)原點(diǎn), 求證:|OA|2+|OB|2<|AB|2. (1)解:由橢圓的定義知|AF1|+|AF2|=|BF1|+|BF2|,∵|AF2|=|BF2|,∴|AF1|=|BF1|,即F1F2 為邊AB上的中線,∴F1F2⊥AB. 在Rt△AF1F2中,cos 30°=,則=, ∴橢圓的離心率為. (2)證明:設(shè)A(x1,y1),B(x2,y2)

11、,∵0<e<,c=1, ∴a>1+. ①當(dāng)直線AB與x軸垂直時,+=1,y2=,·=x1x2+y1y2=1-==,∵a2>,∴·<0, ∴∠AOB恒為鈍角,∴|OA|2+|OB|2<|AB|2. ②當(dāng)直線AB不與x軸垂直時,設(shè)直線AB的方程為: y=k(x+1),代入+=1, 整理得,(b2+a2k2)x2+2k2a2x+a2k2-a2b2=0, ∴x1+x2=,x1x2=, ·=x1x2+y1y2 =x1x2+k2(x1+1)(x2+1) =x1x2(1+k2)+k2(x1+x2)+k2 = == 令m(a)=-a4+3a2-1,由①可知m(a)<0, ∴∠AOB

12、恒為鈍角,∴恒有|OA|2+|OB|2<|AB|2. 12.(xx·長春三校調(diào)研)在直角坐標(biāo)系xOy中,點(diǎn)M,點(diǎn)F為拋物線C:y=mx2(m>0)的焦點(diǎn),線段MF恰被拋物線C平分. (1)求m的值; (2)過點(diǎn)M作直線l交拋物線C于A,B兩點(diǎn),設(shè)直線FA,F(xiàn)M,F(xiàn)B的斜率分別為k1,k2,k3,問k1,k2,k3能否成公差不為零的等差數(shù)列?若能,求直線l的方程;若不能,請說明理由. 解:(1)由題得拋物線C的焦點(diǎn)F的坐標(biāo)為,線段MF的中點(diǎn)N在拋物線C上, ∴-=m,8m2+2m-1=0, ∴m=(m=-舍去). (2)由(1)知拋物線C:x2=4y,F(xiàn)(0,1). 設(shè)直線l的方程為y+=k(x-2),A(x1,y1),B(x2,y2), 由得x2-4kx+8k+2=0, Δ=16k2-4(8k+2)>0, ∴k<或k>. 由根與系數(shù)的關(guān)系得 假設(shè)k1,k2,k3能成公差不為零的等差數(shù)列,則k1+k3=2k2. 而k1+k3=+= = = ==, k2==-, ∴=-,8k2+10k+3=0,解得k=-(符合題意)或k=-(不合題意,舍去). ∴直線l的方程為y+=-(x-2), 即x+2y-1=0.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲