2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練

上傳人:xt****7 文檔編號:105670708 上傳時間:2022-06-12 格式:DOC 頁數(shù):10 大?。?31KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練_第1頁
第1頁 / 共10頁
2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練_第2頁
第2頁 / 共10頁
2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)三輪沖刺 專題13 空間點、線、面的位置關(guān)系專項講解與訓(xùn)練 空間線面位置關(guān)系判斷的常用方法 (1)根據(jù)空間線面平行、垂直關(guān)系的判定定理和性質(zhì)定理逐項判斷來解決問題; (2)必要時可以借助空間幾何模型,如從長方體、四面體等模型中觀察線面位置關(guān)系,并結(jié)合有關(guān)定理來進行判斷. (1)如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直線AB與平面MNQ不平行的是(  ) (2)(2017·高考全國卷Ⅲ)在正方體ABCD-A1B1C1D1中,E為棱CD的中點,則(  ) A.A1E⊥DC1      B.A1E⊥B

2、D C.A1E⊥BC1 D.A1E⊥AC 【答案】 (1)A (2)C 【解析】 (1) 對于選項B,如圖所示,連接CD,因為AB∥CD,M,Q分別是所在棱的中點,所以MQ∥CD,所以AB∥MQ,又AB?平面MNQ,MQ?平面MNQ,所以AB∥平面MNQ.同理可證選項C,D中均有AB∥平面MNQ.故選A. (2)由正方體的性質(zhì),得A1B1⊥BC1,B1C⊥BC1,且B1C∩A1B1=B1,所以BC1⊥平面A1B1CD,又A1E?平面A1B1CD,所以A1E⊥BC1,故選C. 判斷空間線面位置關(guān)系應(yīng)注意的問題 解決空間點、線、面位置關(guān)系的組合判斷題,主要是根據(jù)平面的基本性

3、質(zhì)、空間位置關(guān)系的各種情況,以及空間線面垂直、平行關(guān)系的判定定理和性質(zhì)定理進行判斷,必要時可以利用正方體、長方體、棱錐等幾何模型輔助判斷,同時要注意平面幾何中的結(jié)論不能完全引用到立體幾何中.  【對點訓(xùn)練】 1.(2019·湖北七市(州)聯(lián)考)設(shè)直線m與平面α相交但不垂直,則下列說法中正確的是(  ) A.在平面α內(nèi)有且只有一條直線與直線m垂直 B.過直線m有且只有一個平面與平面α垂直 C.與直線m垂直的直線不可能與平面α平行 D.與直線m平行的平面不可能與平面α垂直 【答案】B 2.(2019·成都第一次診斷性檢測)在直三棱柱ABC-A1B1C1中,平面α與棱AB,AC

4、,A1C1,A1B1分別交于點E,F(xiàn),G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有(  ) A.①② B.②③ C.①③ D.①②③ 【答案】C. 【解析】 AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC-A1B1C1是直三棱柱,易知EH=GF=AA1,所以四邊形EFGH是平行四邊形,故①正確;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1

5、,而GH∥B1C1不一定成立,故②錯誤;由AA1⊥平面BCFE,結(jié)合AA1∥EH知EH⊥平面BCFE,又EH?平面α,所以平面α⊥平面BCFE.綜上可知,選C. 空間平行、垂直關(guān)系的證明 1.直線、平面平行的判定及其性質(zhì) (1)線面平行的判定定理:a?α,b?α,a∥b?a∥α. (2)線面平行的性質(zhì)定理:a∥α,a?β,α∩β=b?a∥b. (3)面面平行的判定定理:a?β,b?β,a∩b=P,a∥α,b∥α?α∥β. (4)面面平行的性質(zhì)定理:α∥β,α∩γ=a,β∩γ=b?a∥b. 2.直線、平面垂直的判定及其性質(zhì) (1)線面垂直的判定定理:m?α,n?α,m∩n

6、=P,l⊥m,l⊥n?l⊥α. (2)線面垂直的性質(zhì)定理:a⊥α,b⊥α?a∥b. (3)面面垂直的判定定理:a?β,a⊥α?α⊥β. (4)面面垂直的性質(zhì)定理:α⊥β,α∩β=l,a?α,a⊥l?a⊥β. (2017·高考北京卷)如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點. (1)求證:PA⊥BD; 5.(2019成都第二次診斷性檢測)已知m,n是空間中兩條不同的直線,α,β是兩個不同的平面,且m?α,n?β.有下列命題:①若α∥β,則m∥n;②若α∥β,則m∥β;③若α∩β=l,且m⊥l,

7、n⊥l,則α⊥β;④若α∩β=l,且m⊥l,m⊥n,則α⊥β.其中真命題的個數(shù)是(  ) A.0 B.1 C.2 D.3 【答案】B. 【解析】對于①,直線m,n可能異面;易知②正確;對于③,直線m,n同時垂直于公共棱,不能推出兩個平面垂直,錯誤;對于④,當直線n∥l時,不能推出兩個平面垂直.故真命題的個數(shù)為1.故選B. 6. 如圖所示,直線PA垂直于⊙O所在的平面,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,點M為線段PB的中點.現(xiàn)有結(jié)論:①BC⊥PC;②OM∥平面APC;③點B到平面PAC的距離等于線段BC的長.其中正確的是________. 【答案】:①②③ 【解析】

8、:對于①,因為PA⊥平面ABC,所以PA⊥BC.因為AB為⊙O的直徑,所以BC⊥AC,所以BC⊥平面PAC,又PC?平面PAC,所以BC⊥PC;對于②,因為點M為線段PB的中點,所以O(shè)M∥PA,因為PA?平面PAC,所以O(shè)M∥平面PAC;對于③,由①知BC⊥平面PAC,所以線段BC的長即是點B到平面PAC的距離,故①②③都正確. 7.已知α,β是兩個不同的平面,有下列三個條件: ①存在一個平面γ,γ⊥α,γ∥β; ②存在一條直線a,a⊥β; ③存在兩條垂直的直線a,b,a⊥β,b⊥α. 其中,所有能成為“α⊥β”的充要條件的序號是________. 答案:①③ 8.(2019

9、·武昌調(diào)研)在矩形ABCD中,AB<BC,現(xiàn)將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折的過程中,給出下列結(jié)論: ①存在某個位置,使得直線AC與直線BD垂直; ②存在某個位置,使得直線AB與直線CD垂直; ③存在某個位置,使得直線AD與直線BC垂直. 其中正確結(jié)論的序號是________.(寫出所有正確結(jié)論的序號) 答案:② 解析:①假設(shè)AC與BD垂直,過點A作AE⊥BD于E,連接CE.則?BD⊥平面AEC?BD⊥CE,而在平面BCD中,EC與BD不垂直,故假設(shè)不成立,①錯. ②假設(shè)AB⊥CD,因為AB⊥AD,所以AB⊥平面ACD,所以AB⊥AC,由AB<BC可知,存在

10、這樣的等腰直角三角形,使AB⊥CD,故假設(shè)成立,②正確. ③假設(shè)AD⊥BC, 因為DC⊥BC,所以BC⊥平面ADC, 所以BC⊥AC,即△ABC為直角三角形,且AB為斜邊,而AB<BC,故矛盾,假設(shè)不成立,③錯.綜上,填②. 9.(2019·石家莊質(zhì)量檢測(一)) 如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M為AD的中點,N為PC上一點,且PC=3PN. (1)求證:MN∥平面PAB; (2)求點M到平面PAN的距離. 【解析】:(1)證明:在平面PBC內(nèi)作NH∥BC交PB于點H,連接AH

11、, 在△PBC中,NH∥BC,且NH=BC=1,AM=AD=1. 又AD∥BC,所以NH∥AM且NH=AM, 所以四邊形AMNH為平行四邊形, 所以MN∥AH, 又AH?平面PAB,MN?平面PAB, 所以MN∥平面PAB. (2)連接AC,MC,PM,平面PAN即為平面PAC,設(shè)點M到平面PAC的距離為h. 由題意可得CD=2,AC=2,所以S△PAC=PA·AC=4, 所以S△AMC=AM·CD=, 由VM-PAC=VP-AMC, 得S△PAC·h=S△AMC·PA, 即4h=×4,所以h=, 所以點M到平面PAN的距離為. 10.(2017·高考全國卷Ⅲ)如圖

12、,四面體ABCD中,△ABC是正三角形,AD=CD. (1)證明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比. 【解析】: (1)證明:取AC的中點O,連接DO,BO. 因為AD=CD,所以AC⊥DO. 又由于△ABC是正三角形,所以AC⊥BO. 從而AC⊥平面DOB,故AC⊥BD. (2)連接EO. 由(1)及題設(shè)知∠ADC=90°,所以DO=AO. 在Rt△AOB中,BO2+AO2=AB2. 又AB=BD,所以 BO2+DO2=BO2+AO2=AB2=BD2,

13、故∠DOB=90°. 由題設(shè)知△AEC為直角三角形,所以EO=AC. 又△ABC是正三角形,且AB=BD,所以EO=BD. 故E為BD的中點,從而E到平面ABC的距離為D到平面ABC的距離的,四面體ABCE的體積為四面體ABCD的體積的,即四面體ABCE與四面體ACDE的體積之比為1∶1. [能力提升] 1.(2016·高考全國卷Ⅰ)平面α過正方體ABCD-A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為(  ) A. B. C. D. 【答案】A. 【解析】因為過點A的平面α與平面CB1D1平行,平面

14、ABCD∥平面A1B1C1D1,所以m∥B1D1∥BD,又A1B∥平面CB1D1,所以n∥A1B,則BD與A1B所成的角為所求角,所以m,n所成角的正弦值為,選A. 2.如圖所示,正方體ABCDA1B1C1D1的棱長為a,點P是棱AD上一點,且AP=,過B1、D1、P的平面交底面ABCD于PQ,Q在直線CD上,則PQ=__________. 答案:a 解析: 因為平面A1B1C1D1∥平面ABCD,而平面B1D1P∩平面ABCD=PQ,平面B1D1P∩平面A1B1C1D1=B1D1,所以B1D1∥PQ. 連接BD,因為B1D1∥BD,所以BD∥PQ, 設(shè)PQ∩AB=M,因

15、為AB∥CD, 所以△APM∽△DPQ. 所以==2,即PQ=2PM. 又知△APM∽△ADB, 所以==, 所以PM=BD,又BD=a, 所以PQ=a. 3.(2019.洛陽第一次統(tǒng)考)如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AB∥CD,AB⊥BC,DC=BC=AB=1,點M在線段EC上. (1)證明:平面BDM⊥平面ADEF; (2)若AE∥平面MDB,求三棱錐E-BDM的體積. 【解析】:(1)證明:因為DC=BC=1,DC⊥BC,所以BD=. 在梯形ABCD中,AD=,AB=2, 所以AD2+BD2=AB2,所以∠ADB=90°. 所以AD⊥

16、BD. 又平面ADEF⊥平面ABCD,ED⊥AD, 平面ADEF∩平面ABCD=AD,ED?平面ADEF, 所以ED⊥平面ABCD,因為BD?平面ABCD,所以BD⊥ED. 又AD∩DE=D,所以BD⊥平面ADEF. 又BD?平面BDM, 所以平面BDM⊥平面ADEF. (2)如圖,連接AC,AC∩BD=O,連接MO, 因為平面EAC∩平面MBD=MO,AE∥平面MDB,AE?平面EAC. 所以AE∥OM. 又AB∥CD, 所以===2, S△EDM=S△EDC=××1×=. 因為ED⊥平面ABCD,BC?平面ABCD,所以DE⊥BC. 因為AB∥CD,AB⊥B

17、C,所以BC⊥CD. 又ED∩DC=D,所以BC⊥平面EDC. 所以VE-BDM=VB-EDM=S△EDM·BC=××1=. 4.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,點E為AC中點.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC,如圖2所示. (1)在CD上找一點F,使AD∥平面EFB; (2)求點C到平面ABD的距離. 【解析】:(1)如圖,取CD的中點F,連接EF,BF,在△ACD中,因為E,F(xiàn)分別為AC,CD的中點, 所以EF為△ACD的中位線, 所以AD∥EF, 因為EF?平面EFB,AD?平面EFB, 所以AD∥平面EFB. 因為三棱錐BACD的高BC=2, S△ACD=AD·CD=2. 又VCABD=VBADC, 即×2h=×2×2, 解得h=. 即點C到平面ABD的距離為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲