《2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題五 解析幾何 第一講 直線與圓課后訓(xùn)練 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題五 解析幾何 第一講 直線與圓課后訓(xùn)練 文(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題五 解析幾何 第一講 直線與圓課后訓(xùn)練 文
一、選擇題
1.“ab=4”是“直線2x+ay-1=0與直線bx+2y-2=0平行”的( )
A.充分必要條件 B.充分而不必要條件
C.必要而不充分條件 D.既不充分也不必要條件
解析:因?yàn)閮芍本€平行,所以斜率相等,即-=-,可得ab=4,又當(dāng)a=1,b=4時(shí),滿足ab=4,但是兩直線重合,故選C.
答案:C
2.已知圓(x-1)2+y2=1被直線x-y=0分成兩段圓弧,則較短弧長(zhǎng)與較長(zhǎng)弧長(zhǎng)之比為( )
A.1∶2 B.1∶3
C.1∶4 D.1∶5
解析:(x-1)2+y2=1的
2、圓心為(1,0),半徑為1.圓心到直線的距離d==,所以較短弧所對(duì)的圓心角為,較長(zhǎng)弧所對(duì)的圓心角為,故兩弧長(zhǎng)之比為1∶2,故選A.
答案:A
3.(2018·臨沂模擬)已知直線3x+ay=0(a>0)被圓(x-2)2+y2=4所截得的弦長(zhǎng)為2,則a的值為( )
A. B.
C.2 D.2
解析:由已知條件可知,圓的半徑為2,又直線被圓所截得的弦長(zhǎng)為2,故圓心到直線的距離為,即=,得a=.
答案:B
4.(2018·濟(jì)寧模擬)已知圓C過點(diǎn)A(2,4),B(4,2),且圓心C在直線x+y=4上,若直線x+2y-t=0與圓C相切,則t的值為( )
A.-6±2 B.6±2
C.
3、2±6 D.6±4
解析:因?yàn)閳AC過點(diǎn)A(2,4),B(4,2),所以圓心C在線段AB的垂直平分線y=x上,又圓心C在直線x+y=4上,聯(lián)立,解得x=y(tǒng)=2,即圓心C(2,2),圓C的半徑r==2.又直線x+2y-t=0與圓C相切,所以=2,解得t=6±2.
答案:B
5.(2018·南昌第一次模擬)如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+1與圓x2+y2=4相交于A,B兩點(diǎn),則cos∠AOB=( )
A. B.-
C. D.-
解析:因?yàn)閳Ax2+y2=4的圓心為O(0,0),半徑為2,所以圓心O到直線y=2x+1的距離d==,所以弦長(zhǎng)|AB|=2=2.
在△AOB中
4、,由余弦定理得cos∠AOB===-.
答案:D
6.(2018·合肥第一次教學(xué)質(zhì)量檢測(cè))設(shè)圓x2+y2-2x-2y-2=0的圓心為C,直線l過(0,3)與圓C交于A,B兩點(diǎn),若|AB|=2,則直線l的方程為( )
A.3x+4y-12=0或4x-3y+9=0
B.3x+4y-12=0或x=0
C.4x-3y+9=0或x=0
D.3x-4y+12=0或4x+3y+9=0
解析:當(dāng)直線l的斜率不存在時(shí),計(jì)算出弦長(zhǎng)為2,符合題意;
當(dāng)直線l的斜率存在時(shí),可設(shè)直線l的方程為y=kx+3,由弦長(zhǎng)為2可知,圓心到該直線的距離為1,從而有=1,解得k=- ,綜上,直線l的方程為x=0或3
5、x+4y-12=0,故選B.
答案:B
7.已知圓O:x2+y2=1,點(diǎn)P為直線+=1上一動(dòng)點(diǎn),過點(diǎn)P向圓O引兩條切線PA,PB,A,B為切點(diǎn),則直線AB經(jīng)過定點(diǎn)( )
A.(,) B.(,)
C.(,0) D.(0,)
解析:因?yàn)辄c(diǎn)P是直線+=1上的一動(dòng)點(diǎn),所以設(shè)P(4-2m,m).
因?yàn)镻A,PB是圓x2+y2=1的兩條切線,切點(diǎn)分別為A,B,所以O(shè)A⊥PA,OB⊥PB,所以點(diǎn)A,B在以O(shè)P為直徑的圓C上,即弦AB是圓O和圓C的公共弦.
因?yàn)閳A心C的坐標(biāo)是(2-m,),且半徑的平方r2=,所以圓C的方程為(x-2+m)2+(y-)2=,①
又x2+y2=1,②
所以②-
6、①得,(2m-4)x-my+1=0,即公共弦AB所在的直線方程為(2x-y)m+(-4x+1)=0,所以由得所以直線AB過定點(diǎn)(,).故選B.
答案:B
8.若過點(diǎn)A(1,0)的直線l與圓C:x2+y2-6x-8y+21=0相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,l與直線x+2y+2=0的交點(diǎn)為N,則|AM|·|AN|的值為( )
A.5 B.6
C.7 D.8
解析:圓C的方程化成標(biāo)準(zhǔn)方程可得(x-3)2+(y-4)2=4,故圓心為C(3,4),半徑為2,則可設(shè)直線l的方程為kx-y-k=0(k≠0),由得N,又直線CM與l垂直,得直線CM的方程為y-4=-(x-3).
由
得
7、M,
則|AM|·|AN|
=.
=××=6.故選B.
答案:B
二、填空題
9.(2018·高考全國(guó)卷Ⅰ)直線y=x+1與圓x2+y2+2y-3=0交于A,B兩點(diǎn),則|AB|=________.
解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.
∴圓心C(0,-1),半徑r=2.
圓心C(0,-1)到直線x-y+1=0的距離d==,∴|AB|=2=2=2.
答案:2
10.(2018·江蘇三市三模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-2),點(diǎn)B(1,-1),P為圓x2+y2=2上一動(dòng)點(diǎn),則的最大值是________.
解析:設(shè)動(dòng)點(diǎn)P(x,y),令=t
8、(t>0),則=t2,整理得,(1-t2)x2+(1-t2)y2-2x+(2-4t2)y+2-4t2=0,(*)
易知當(dāng)1-t2≠0時(shí),(*)式表示一個(gè)圓,且動(dòng)點(diǎn)P在該圓上,
又點(diǎn)P在圓x2+y2=2上,所以點(diǎn)P為兩圓的公共點(diǎn),兩圓方程相減得兩圓公共弦所在直線l的方程為x-(1-2t2)y-2+3t2=0,
所以圓心(0,0)到直線l的距離d=≤,解得0<t≤2,所以的最大值為2.
答案:2
三、解答題
11.已知圓C過點(diǎn)P(1,1),且圓C與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)求圓C的方程;
(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求·的
9、最小值.
解析:(1)設(shè)圓心C(a,b),則
解得
則圓C的方程為x2+y2=r2,將點(diǎn)P的坐標(biāo)代入得r2=2,
故圓C的方程為x2+y2=2.
(2)設(shè)Q(x,y),則x2+y2=2,
·=(x-1,y-1)·(x+2,y+2)=x2+y2+x+y-4=x+y-2,
令x=cos θ,y=sin θ,
則·=x+y-2=(sin θ+cos θ)-2
=2sin-2,
所以·的最小值為-4.
12.已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O
10、為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|取得最小值時(shí)點(diǎn)P的坐標(biāo).
解析:(1)圓C的標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=2.
①當(dāng)此切線在兩坐標(biāo)軸上的截距為零時(shí),設(shè)此切線方程為y=kx,
由=,得k=2±,
∴此切線方程為y=(2±)x.
②當(dāng)此切線在兩坐標(biāo)軸上的截距不為零時(shí),設(shè)此切線方程為x+y-a=0,由=,得|a-1|=2,即a=-1或a=3.
∴此切線方程為x+y+1=0或x+y-3=0.
綜上,此切線方程為y=(2+)x或y=(2-)x或x+y+1=0或x+y-3=0.
(2)由|PO|=|PM|,得|PO|2=|PM|2=|PC|2-|CM|2,即x+y=(x1+1)2+(y1-2)2-2,整理得2x1-4y1+3=0,即點(diǎn)P在直線l:2x+4y+3=0上,
當(dāng)|PM|取最小值時(shí),|PO|取最小值,
此時(shí)直線PO⊥l,∴直線PO的方程為2x+y=0.
解方程組得
故使|PM|取得最小值時(shí),點(diǎn)P的坐標(biāo)為.