《2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考系列 8.1 坐標(biāo)系與參數(shù)方程練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考系列 8.1 坐標(biāo)系與參數(shù)方程練習(xí)(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考系列 8.1 坐標(biāo)系與參數(shù)方程練習(xí)
1.已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2ρcos=2.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.
解析: (1)ρ=2?ρ2=4,所以x2+y2=4;
因?yàn)棣?-2ρcos=2,
所以ρ2-2ρ=2,
所以x2+y2-2x-2y-2=0.
(2)將兩圓的直角坐標(biāo)方程相減,得經(jīng)過兩圓交點(diǎn)的直線方程為x+y=1.化為極坐標(biāo)方程為ρcos θ+ρsin θ=1,
即ρsin=.
2.(2018·西安市八校聯(lián)考)以平面直角坐標(biāo)系的坐標(biāo)原
2、點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
解析: (1)由ρsin2θ=4cos θ,可得ρ2sin2θ=4ρcos θ,
∴曲線C的直角坐標(biāo)方程為y2=4x.
(2)將直線l的參數(shù)方程代入y2=4x,整理得4t2+8t-7=0,
∴t1+t2=-2,t1t2=-,
∴|AB|=|t1-t2|=×=×=.
3.(2018·合肥市第一次教學(xué)質(zhì)量檢測)在直角坐標(biāo)系xOy中,曲線C1:(θ為參數(shù)),在以O(shè)為極
3、點(diǎn).x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ-2cos θ=0.
(1)求曲線C2的直角坐標(biāo)方程;
(2)若曲線C1上有一動點(diǎn)M,曲線C2上有一動點(diǎn)N,求|MN|的最小值.
解析: (1)由ρ-2cos θ=0得ρ2-2ρcos θ=0.
∵ρ2=x2+y2,ρcos θ=x,∴x2+y2-2x=0.
即曲線C2的直角坐標(biāo)方程為(x-1)2+y2=1.
(2)由(1)可知,圓C2的圓心為C2(1,0),半徑為1.
設(shè)曲線C1上的動點(diǎn)M(3cos θ,2sin θ),
由動點(diǎn)N在圓C2上可得|MN|min=|MC2|min-1.
∵|MC2|==,
∴當(dāng)cos θ=時,|
4、MC2|min=,
∴|MN|min=|MC2|min-1=-1.
4.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為y=x,以O(shè)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和直線C2的極坐標(biāo)方程;
(2)若直線C2與曲線C1交于A,B兩點(diǎn),求+.
解析: (1)曲線C1的參數(shù)方程為(α為參數(shù)),普通方程為(x-2)2+(y-2)2=1,即x2+y2-4x-4y+7=0,極坐標(biāo)方程為ρ2-4ρcos θ-4ρsin θ+7=0,
直線C2的方程為y=x,極坐標(biāo)方程為θ=.
(2)直線C2與曲線C1聯(lián)立,可得ρ2-(2+2)ρ+7=0,
設(shè)
5、A,B兩點(diǎn)對應(yīng)的極徑分別為ρ1,ρ2,則ρ1+ρ2=2+2,ρ1ρ2=,
所以+==.
5.(2018·全國卷Ⅲ)在平面直角坐標(biāo)系xOy中,⊙O的參數(shù)方程為(θ為參數(shù)),過點(diǎn)(0,-)且傾斜角為α的直線l與⊙O交于A,B兩點(diǎn).
(1)求α的取值范圍;
(2)求AB中點(diǎn)P的軌跡的參數(shù)方程.
解析: (1)⊙O的直角坐標(biāo)方程為x2+y2=1.
當(dāng)α=時,l與⊙O交于兩點(diǎn).
當(dāng)α≠時,記tan α=k,則l的方程為y=kx-.l與⊙O交于兩點(diǎn)當(dāng)且僅當(dāng)<1,解得k<-1或k>1,即α∈或α∈.
綜上,α的取值范圍是.
(2)l的參數(shù)方程為
(t為參數(shù),<α<).
設(shè)A,B,P對應(yīng)
6、的參數(shù)分別為tA,tB,tP,
則tP=,且tA,tB滿足t2-2tsin α+1=0.
于是tA+tB=2sin α,tP=sin α.
又點(diǎn)P的坐標(biāo)(x,y)滿足
所以點(diǎn)P的軌跡的參數(shù)方程是
.
6.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin=.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn)P(0,2),l和C交于A,B兩點(diǎn),求|PA|+|PB|.
解析: (1)由消去參數(shù)α,得+y2=1,
即C的普通方程為+y2=1.
由ρsin=,得ρsin θ-ρcos θ=2,(*)
7、
將代入(*),化簡得y=x+2,
所以直線l的傾斜角為.
(2)由(1)知,點(diǎn)P(0,2)在直線l上,可設(shè)直線l的參數(shù)方程為(t為參數(shù)),即(t為參數(shù)),
代入+y2=1并化簡,得5t2+18t+27=0,
Δ=(18)2-4×5×27=108>0,
設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,
則t1+t2=-<0,t1t2=>0,所以t1<0,t2<0,
所以|PA|+|PB|=|t1|+|t2|=-(t1+t2)=.
B級
1.(2018·全國卷Ⅰ)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸
8、為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2+2ρcos θ-3=0.
(1)求C2的直角坐標(biāo)方程;
(2)若C1與C2有且僅有三個公共點(diǎn),求C1的方程.
解析: (1)由x=ρcos θ,y=ρsin θ得C2的直角坐標(biāo)方程為(x+1)2+y2=4.
(2)由(1)知C2是圓心為A(-1,0),半徑為2的圓.
由題設(shè)知,C1是過點(diǎn)B(0,2)且關(guān)于y軸對稱的兩條射線.記y軸右邊的射線為l1,y軸左邊的射線為l2.
由于點(diǎn)B在圓C2的外面,故C1與C2有且僅有三個公共點(diǎn)等價于l1與C2只有一個公共點(diǎn)且l2與C2有兩個公共點(diǎn),或l2與C2只有一個公共點(diǎn)且l1與C2有兩個公共點(diǎn).
9、當(dāng)l1與C2只有一個公共點(diǎn)時,點(diǎn)A到l1所在直線的距離為2,所以=2,故k=-或k=0.
經(jīng)檢驗(yàn),當(dāng)k=0時,l1與C2沒有公共點(diǎn);
當(dāng)k=-時,l1與C2只有一個公共點(diǎn),l2與C2有兩個公共點(diǎn).
當(dāng)l2與C2只有一個公共點(diǎn)時,點(diǎn)A到l2所在直線的距離為2,所以=2,故k=0或k=.
經(jīng)檢驗(yàn),當(dāng)k=0時,l1與C2沒有公共點(diǎn);
當(dāng)k=時,l2與C2沒有公共點(diǎn).
綜上,所求C1的方程為y=-|x|+2.
2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程是ρ=2.矩形ABCD內(nèi)接于曲線C1,A,B兩點(diǎn)的極坐標(biāo)分別為和.將曲線C1上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)
10、縮短為原來的一半,得到曲線C2.
(1)寫出C,D的直角坐標(biāo)及曲線C2的參數(shù)方程;
(2)設(shè)M為C2上任意一點(diǎn),求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.
解析: (1)曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1,A,B兩點(diǎn)的極坐標(biāo)分別為和,利用對稱性可得C,D.將C,D兩點(diǎn)的極坐標(biāo)分別化為直角坐標(biāo)為C(-,-1),D(,-1).
曲線C1的極坐標(biāo)方程是ρ=2,將其化為直角坐標(biāo)方程為x2+y2=4.
設(shè)曲線C2上的任意一點(diǎn)P(x,y),曲線C1上的任意一點(diǎn)P′(x′,y′),則可得
將其代入曲線C1的直角坐標(biāo)方程,得x2+(2y)2=4,
∴曲線C2的直角坐標(biāo)方程為x2+4y2=4.
故曲線C2的參數(shù)方程為
(2)由題意,知A(,1),B(-,1).
設(shè)M(2cos θ,sin θ),則|MA|2+|MB|2+|MC|2+|MD|2=(2cos θ-)2+(sin θ-1)2+(2cos θ+)2+(sin θ-1)2+(2cos θ+)2+(sin θ+1)2+(2cos θ-)2+(sin θ+1)2=12cos2θ+20∈[20,32].
即取值范圍為[20,32].