2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文

上傳人:xt****7 文檔編號:105923148 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):5 大小:45KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文_第1頁
第1頁 / 共5頁
2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文_第2頁
第2頁 / 共5頁
2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文 1.(2018·安徽模擬)將圓x2+y2=1上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?,得曲線C. (1)寫出C的參數(shù)方程; (2)設(shè)直線l:3x+y+1=0與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程. 解 (1)由坐標(biāo)變換公式得x=3x′,y=y(tǒng)′代入x2+y2=1中得9x′2+y′2=1, 故曲線C的參數(shù)方程為(θ為參數(shù)). (2)由題知,P1,P2(0,-1), P1P2線段中點(diǎn)M, kP1P2=-3,故P

2、1P2線段中垂線的方程為 y+= 即3x-9y-4=0,則極坐標(biāo)方程為 3ρcosθ-9ρsinθ-4=0. 2.(2018·廣東模擬)以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是2ρsin=5,射線OM:θ=,在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(φ為參數(shù)). (1)求圓C的普通方程及極坐標(biāo)方程; (2)射線OM與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長. 解 (1)由圓C的參數(shù)方程(φ為參數(shù))知,圓C的圓心為(0,2),半徑為2, 圓C的普通方程為x2+(y-2)2=4, 將x=ρcosθ,y=ρsinθ代入x2+(y-2)2=4,

3、得圓C的極坐標(biāo)方程為ρ=4sinθ. (2)設(shè)P(ρ1,θ1),則由 解得ρ1=2,θ1=. 設(shè)Q(ρ2,θ2),則由 解得ρ2=5,θ2=, 所以|PQ|=|ρ1-ρ2|=3. 3.在平面直角坐標(biāo)系xOy中,傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρcos2θ-4sinθ=0. (1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程; (2)已知點(diǎn)P(1,0).若點(diǎn)M的極坐標(biāo)為,直線l經(jīng)過點(diǎn)M且與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q,求|PQ|的值. 解 (1)∵直線l的參數(shù)方程為(t為參數(shù)),

4、 ∴直線l的普通方程為y=tanα·(x-1). 由ρcos2θ-4sinθ=0得ρ2cos2θ-4ρsinθ=0, 即x2-4y=0. ∴曲線C的直角坐標(biāo)方程為x2=4y. (2)∵點(diǎn)M的極坐標(biāo)為, ∴點(diǎn)M的直角坐標(biāo)為(0,1). ∴tanα=-1,直線l的傾斜角α=. ∴直線l的參數(shù)方程為(t為參數(shù)). 代入x2=4y,得t2-6t+2=0. 設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2. ∵Q為線段AB的中點(diǎn), ∴點(diǎn)Q對應(yīng)的參數(shù)值為==3. 又點(diǎn)P(1,0),則|PQ|==3. 4.(2018·福建模擬)在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以

5、O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心為,半徑為1的圓. (1)求曲線C1的普通方程,C2的直角坐標(biāo)方程; (2)設(shè)M為曲線C1上的點(diǎn),N為曲線C2上的點(diǎn),求|MN|的取值范圍. 解 (1)由得 ①2+②2得+y2=1. 所以曲線C1的普通方程為+y2=1. C2,設(shè)C2(x,y),則x=3cos=0, y=3sin=3,故C2(0,3),且r=1,則圓C2的直角坐標(biāo)方程為x2+(y-3)2=1. (2)設(shè)M(2cosφ,sinφ),則 |MC2|= =. 當(dāng)sinφ=1時(shí),|MC2|min=2, 當(dāng)sinφ=-1時(shí),|MC2|max=4, 故|MN

6、|min=2-1=1,|MN|max=4+1=5. 所以|MN|的取值范圍是[1,5]. 5.(2018·武漢模擬)在直角坐標(biāo)系xOy中,已知圓C:(θ為參數(shù)),點(diǎn)P在直線l:x+y-4=0上,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系. (1)求圓C和直線l的極坐標(biāo)方程; (2)射線OP交圓C于R,點(diǎn)Q在射線OP上,且滿足|OP|2=|OR|·|OQ|,求Q點(diǎn)軌跡的極坐標(biāo)方程. 解 (1)圓C的極坐標(biāo)方程ρ=2,直線l的極坐標(biāo)方程為ρ=. (2)設(shè)P,Q,R的極坐標(biāo)分別為(ρ1,θ),(ρ,θ),(ρ2,θ), 因?yàn)棣?=,ρ2=2, 又因?yàn)閨OP|2=|OR|·|O

7、Q|,即ρ=ρ·ρ2, 所以ρ==×, 所以Q點(diǎn)軌跡的極坐標(biāo)方程為ρ=. 6.(2018·銀川模擬)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρsin=2,將圓x2+y2+4x+3=0向右平移兩個(gè)單位長度,再把所得曲線上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€C. (1)求直線l的直角坐標(biāo)方程及曲線C的參數(shù)方程; (2)若A,B分別為曲線C及直線l上的動(dòng)點(diǎn),求|AB|的最小值. 解 (1)由ρsin=2得 ρsinθ+ρcosθ=2, ∴ρsinθ+ρcosθ=4,即x+y-4=0, ∵x2+y2+4x+3=0即(x+2)2+y2=

8、1, 向右平移兩個(gè)單位長度,即x2+y2=1, 橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€C:+y2=1. 故曲線C的參數(shù)方程為(α為參數(shù)). (2)由(1)知曲線C上的點(diǎn)(cosα,sinα), 到直線l:x+y-4=0的距離 d==, ∴當(dāng)α=時(shí),|AB|的最小值為. 7.(2018·陜西質(zhì)檢)在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(t>0,α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin=3. (1)當(dāng)t=1時(shí),求曲線C上的點(diǎn)到直線l的距離的最大值; (2)若曲線C上的所有點(diǎn)都在直線l的下方,求實(shí)數(shù)t的取值范圍. 解 (1)由ρ

9、sin=3得ρsinθ+ρcosθ=3, 把x=ρcosθ,y=ρsinθ代入得直線l的直角坐標(biāo)方程為x+y-3=0, 當(dāng)t=1時(shí),曲線C的參數(shù)方程為(α為參數(shù)), 消去參數(shù)得曲線C的普通方程為x2+y2=1, ∴曲線C為圓,且圓心為O,則點(diǎn)O到直線l的距離 d==, ∴曲線C上的點(diǎn)到直線l的距離的最大值為1+. (2)∵曲線C上的所有點(diǎn)均在直線l的下方, ∴對任意的α∈R,tcosα+sinα-3<0恒成立, 即cos(α-φ)<3恒成立, ∴<3,又t>0,∴0

10、1),曲線C的參數(shù)方程為(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且l過點(diǎn)A;過點(diǎn)B與直線l平行的直線為l1,l1與曲線C相交于兩點(diǎn)M,N. (1)求曲線C上的點(diǎn)到直線l距離的最小值; (2)求|MN|的值. 解 (1)∵A在l上, ∴4cos=a,即a=4, ∴直線l的極坐標(biāo)方程為ρcos=4. ∴ρcosθ+ρsinθ=4. 即x+y-8=0. 設(shè)曲線C上一點(diǎn)P(2cosθ,sinθ), 則d==, 當(dāng)sin(θ+φ)=1時(shí),dmin==. (2)∵l1∥l,∴k1=k=-1, 設(shè)l1的傾斜角為α,則tanα=-1,∴α=, ∴l(xiāng)1的參數(shù)方程為(t為參數(shù)), 曲線C的普通方程為+=1. ∴32+42=12, 即7t2+2t-10=0, ∴t1+t2=-,t1·t2=-, ∴|MN|=|t1-t2|==.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲