(江蘇專版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第一章 集合與常用邏輯用語學(xué)案 文
《(江蘇專版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第一章 集合與常用邏輯用語學(xué)案 文》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第一章 集合與常用邏輯用語學(xué)案 文(35頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第一章 集合與常用邏輯用語 第一節(jié)集合的概念與運算 1.集合的相關(guān)概念 (1)集合元素的三個特性:確定性、無序性、互異性. (2)元素與集合的兩種關(guān)系:屬于,記為;不屬于,記為. (3)集合的三種表示方法:列舉法、描述法、圖示法. (4)五個特定的集合: 集合 自然數(shù)集 正整數(shù)集 整數(shù)集 有理數(shù)集 實數(shù)集 符號 N*或N+ 2.集合間的基本關(guān)系 表示 關(guān)系 文字語言 符號語言 記法 基本關(guān)系 子集 集合A的任意一個元素都是集合B的元素 x∈A? x∈B A?B或B?A 真子集 集合A是集合B的子集,并且
2、集合A與集合B不相等 A?B, 且A≠B AB或 BA 相等 集合A,B的元素完全相同 A?B, B?A A=B 空集 不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集 ?x,x??,??A,?B ? 3.集合的基本運算 表示 運算 文字語言 符號語言 圖形語言 記法 交集 所有屬于集合A且屬于集合B的元素構(gòu)成的集合 {x|x∈A,且x∈B} A∩B 并集 所有屬于集合A或者屬于集合B的元素構(gòu)成的集合 {x|x∈A,或x∈B} A∪B 補集 全集U中不屬于集合A的所
3、有元素構(gòu)成的集合 {x|x∈U,且x?A} ?UA 4.集合的運算性質(zhì) (1)并集的性質(zhì):A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?BA. (2)交集的性質(zhì):A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B. (3)補集的性質(zhì):A∪(?UA)=;A∩(?UA)=; ?U(?UA)=;?U(A∪B)=(?UA)∩(?UB);?U(A∩B)=(?UA)∪(?UB). [小題體驗] 1.已知全集U={1,2,3,4,5,6},M={2,3,4},N={4,5},則?U(M∪N)=________. 答案:{1,6} 2.設(shè)集合A={x|(x+1)(x-2
4、)<0},B={x|0≤x≤3},則A∩B=________. 答案:{x|0≤x<2} 3.已知集合A={x|-1≤x≤1},則A∩Z=________. 答案:{-1,0,1} 4.設(shè)全集U=N*,集合A={2,3,6,8,9},集合B={x|x>3,x∈N*},則圖中陰影部分所表示的集合是________. 答案:{2,3} 1.認(rèn)清集合元素的屬性(是點集、數(shù)集或其他形式)和化簡集合是正確求解集合問題的兩個先決條件. 2.解題時注意區(qū)分兩大關(guān)系:一是元素與集合的從屬關(guān)系;二是集合與集合的包含關(guān)系. 3.注意空集的特殊性,在寫集合的子集時不要忘了空集和它
5、本身. 4.運用數(shù)軸圖示法注意端點是實心還是空心. 5.在解決含參數(shù)的集合問題時,要注意檢驗集合中元素的互異性,否則很可能會因為不滿足“互異性”而導(dǎo)致解題錯誤. [小題糾偏] 1.已知集合A={x∈N|x2-2x≤0},則滿足A∪B={0,1,2}的集合B的個數(shù)為________. 解析:由A中的不等式解得0≤x≤2,x∈N,即A={0,1,2}.因為A∪B={0,1,2},所以B可能為{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},?,共8個. 答案:8 2.已知集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},則集合P
6、的元素個數(shù)為________. 解析:因為a∈M,b∈N,所以a=1或2,b=3或4或5.當(dāng)a=1時,若b=3,則x=4;若b=4,則x=5;若b=5,則x=6.同理,當(dāng)a=2時,若b=3,則x=5;若b=4,則x=6;若b=5,則x=7,由集合中元素的特性知P={4,5,6,7},則P中的元素共有4個. 答案:4 3.設(shè)全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},則(?UA)∩B=________. 解析:依題意得A=,?UA=; B={x|x+2>0}={x|x>-2}, 因此(?UA)∩B=. 答案: 4.設(shè)集合A={(x,y)|y=x+
7、1,x∈R},B={(x,y)|x2+y2=1},則滿足C?(A∩B)的集合C的個數(shù)為________. 解析:法一:解方程組得或所以A∩B={(0,1),(-1,0)},即A∩B中有2個元素.因為C?(A∩B),所以集合C的個數(shù)是4. 法二:在同一平面直角坐標(biāo)系中畫出直線y=x+1和圓x2+y2=1的圖象,可知,直線和圓有兩個交點,即A∩B中有2個元素.因為C?(A∩B),所以集合C的個數(shù)是4. 答案:4 [題組練透] 1.(易錯題)已知集合A={1,2,4},則集合B={(x,y)|x∈A,y∈A}中元素的個數(shù)為________. 解析:集合B中元素有(1,1),(1
8、,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9個. 答案:9 2.已知a,b∈R,若={a2,a+b,0},則a2 018+b2 018=________. 解析:由已知得a≠0,則=0,所以b=0,于是a2=1,即a=1或a=-1,又根據(jù)集合中元素的互異性可知a=1應(yīng)舍去,因此a=-1,故a2 018+b2 018=(-1)2 018+02 018=1. 答案:1 3.若集合A={x∈R|ax2-3x+2=0}中只有一個元素,則a=________. 解析:若集合A中只有一個元素,則方程ax2-3x+2=0只有一個實根或有兩個相等
9、實根.當(dāng)a=0時,x=,符合題意. 當(dāng)a≠0時,由Δ=(-3)2-8a=0,得a=, 所以a的值為0或. 答案:0或 4.(易錯題)已知集合A={m+2,2m2+m},若3∈A,則m的值為________. 解析:由題意得m+2=3或2m2+m=3, 則m=1或m=-,當(dāng)m=1時, m+2=3且2m2+m=3, 根據(jù)集合中元素的互異性可知不滿足題意; 當(dāng)m=-時,m+2=, 而2m2+m=3, 故m=-. 答案:- [謹(jǐn)記通法] 與集合中元素有關(guān)問題的求解策略 (1)確定集合的元素是什么,即集合是數(shù)集還是點集.(如“題組練透”第1題) (2)看這些元素滿足什么限
10、制條件. (3)根據(jù)限制條件列式求參數(shù)的值或確定集合中元素的個數(shù),但要注意檢驗集合是否滿足元素的互異性.(如“題組練透”第4題) 對應(yīng)學(xué)生用書P2 [典例引領(lǐng)] 1.已知集合M={1,2,3,4},則集合P={x|x∈M且2x?M}的子集有________個. 解析:由題意,得P={3,4},所以集合P的子集有22=4個. 答案:4 2.已知集合A={x|y=,x∈R},B={x|x=m2,m∈A},則集合A,B之間的關(guān)系為________. 解析:由題意知A={x|y=,x∈R},所以A={x|-1≤x≤1}.所以B={x|x=m2,m∈A}={x|0≤x≤1},所以B
11、A. 答案:BA [由題悟法] 判斷集合間關(guān)系的3種方法 列舉法 根據(jù)題中限定條件把集合元素表示出來,然后比較集合元素的異同,從而找出集合之間的關(guān)系 結(jié)構(gòu)法 從元素的結(jié)構(gòu)特點入手,結(jié)合通分、化簡、變形等技巧,從元素結(jié)構(gòu)上找差異進(jìn)行判斷 數(shù)軸法 在同一個數(shù)軸上表示出兩個集合,比較端點之間的大小關(guān)系,從而確定集合與集合之間的關(guān)系 [即時應(yīng)用] 1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A?C?B的集合C的個數(shù)為________. 解析:由x2-3x+2=0得x=1或x=2, 所以A={1,2}. 由題意知B={1,
12、2,3,4},所以滿足條件的C可為{1,2},{1,2,3},{1,2,4},{1,2,3,4},故所求集合C的個數(shù)為4.
答案:4
2.已知集合A={x|-1 13、數(shù)x+y的值;
(2)是否存在實數(shù)x,使得B?A?若存在,求出x的值;若不存在,請說明理由.
解:(1)由題可知所以故x+y=19.
(2)假設(shè)存在實數(shù)x,使得B?A,則2-x=3,或2-x=.
若2-x=3,則x=-1,不合題意;
若2-x=,則x+-2=0,解得x=1,不合題意.
故不存在實數(shù)x,使得B?A.
對應(yīng)學(xué)生用書P2
[鎖定考向]
集合運算多與解簡單的不等式、函數(shù)的定義域、值域相聯(lián)系,考查對集合的理解及不等式的有關(guān)知識;有些集合題為抽象集合題或新定義型集合題,考查學(xué)生的靈活處理問題的能力.
常見的命題角度有:
(1)集合的運算;
(2)利用集合運算求 14、參數(shù);
(3)新定義集合問題.
[題點全練]
角度一:集合的運算
1.(2017·北京高考改編)已知全集U=R,集合A={x|x<-2或x>2},則?UA=________.
解析:由已知可得,?UA=[-2,2].
答案:[-2,2]
2.(2017·天津高考改編)設(shè)集合A={1,2,6},B={2,4},C={1,2,3,4},則(A∪B)∩C=________.
解析:由題意知A∪B={1,2,4,6},
所以(A∪B)∩C={1,2,4}.
答案:{1,2,4}
角度二:利用集合運算求參數(shù)
3.(2018·蘇州模擬)已知全集U={2,3,a2+2a 15、-3},A={|2a-1|,2},?UA={5},則實數(shù)a=________.
解析:由題意知,a2+2a-3=5,解得a=-4或a=2.當(dāng)a=-4時,|2a-1|=9,而9?U,所以a=-4不滿足題意,舍去;當(dāng)a=2時,|2a-1|=3,3∈U,滿足題意.故實數(shù)a的值為2.
答案:2
角度三:新定義集合問題
4.如圖所示的Venn圖中,A,B是非空集合,定義集合AB為陰影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},則AB=________.
解析:因為A={x|0≤x≤2},B={y|y>1},A∪B={x|x≥0},A∩B={x|1 16、,結(jié)合Venn圖可知AB=?A∪B(A∩B)={x|0≤x≤1或x>2}.
答案:{x|0≤x≤1或x>2}
[通法在握]
解集合運算問題4個技巧
看元素構(gòu)成
集合是由元素組成的,從研究集合中元素的構(gòu)成入手是解決集合運算問題的關(guān)鍵
對集合化簡
有些集合是可以化簡的,先化簡集合再研究其關(guān)系并進(jìn)行運算,可使問題簡單明了、易于解決
數(shù)形結(jié)合
常用的數(shù)形結(jié)合形式有數(shù)軸、坐標(biāo)系和Venn圖
新定義型
問題
以集合為依托,對集合的定義、運算、性質(zhì)加以深入的創(chuàng)新,但最終化為原來的集合知識和相應(yīng)數(shù)學(xué)知識來解決
[演練沖關(guān)]
1.(2018·南京高三年級學(xué)情調(diào)研)若集合P=
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第7課時圖形的位置練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第1課時圖形的認(rèn)識與測量1平面圖形的認(rèn)識練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊1負(fù)數(shù)第1課時負(fù)數(shù)的初步認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)上冊期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊易錯清單十二課件新人教版
- 標(biāo)準(zhǔn)工時講義
- 2021年一年級語文上冊第六單元知識要點習(xí)題課件新人教版
- 2022春一年級語文下冊課文5識字測評習(xí)題課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時數(shù)學(xué)思考1練習(xí)課件新人教版