2022年高考數(shù)學(xué) 考前30天之備戰(zhàn)沖刺押題系列 名師預(yù)測卷 4
《2022年高考數(shù)學(xué) 考前30天之備戰(zhàn)沖刺押題系列 名師預(yù)測卷 4》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 考前30天之備戰(zhàn)沖刺押題系列 名師預(yù)測卷 4(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué) 考前30天之備戰(zhàn)沖刺押題系列 名師預(yù)測卷 4 一、填空題:本大題共14小題,每小題5分,共70分.請把答案填寫在答題卡相應(yīng)的位置上. 1.若集合A={x|x>2},B={x|x≤3},則A∩B= ▲ . 答案: 解析:A∩B= 2.函數(shù)y=sin2x+cos2x的最小正周期是 ▲ . 答案:π 解析:y=sin2x+cos2x=2 sin(2 x+60o) TT=2π/2= π 3.已知(a+i)2=2i,其中i是虛數(shù)單位,那么實數(shù) a= ▲ . 答案:1 解析:(a+i)2= a2+2 ai+ i2= a2-1+
2、2 ai=2i T a=1 4.已知向量a與b的夾角為60o,且|a|=1,|b|=2,那么的值為 ▲ . 答案:7 解析:=a2+ b2+2ab = a2+ b2+2|a||b| cos60o=12+22+2x1x2=7 5.底面邊長為2m,高為1m的正三棱錐的全面積為 ▲ m2. 答案: 解析:如圖所示,正三棱錐,為頂點(diǎn)在底面內(nèi)的射影,則為正的垂心,過作于,連接。 則,且,在中,。 于是,,。 所以。 6.若雙曲線的焦點(diǎn)到漸近線的距離為,則實數(shù)k的值是 ▲ . 答案:8 解析:法一:雙曲線的漸近線方程為;焦點(diǎn)坐標(biāo)是。 由焦點(diǎn)到漸
3、近線的距離為,不妨。解得。 法二:可以將問題變?yōu)椤叭魴E圓的離心率為,則實數(shù)k= ”,這時需要增加分 類討論的意思 法三:結(jié)論法: 在雙曲線中,雙曲線的焦點(diǎn)到漸近線的距離為b 【在本題中,則b 2=k=()2=8】 7.若實數(shù)x,y滿足則z=x+2y的最大值是 ▲ . 答案:2 解析:滿足題中約束條件的可行域如圖所示。 目標(biāo)函數(shù)取得最大值, 即使得函數(shù)在軸上的截距最大。 結(jié)合可行域范圍知,當(dāng)其過點(diǎn)時,。 8.對于定義在R上的函數(shù)f(x),給出三個命題: ①若,則f(x)為偶函數(shù); ②若,則f(x)不是偶函數(shù); ③若,則f(x)一定不是奇函數(shù).
4、其中正確命題的序號為 ▲ . 答案:② 解析:命題③學(xué)生很容易判為真命題. 反例:函數(shù)是奇函數(shù),且滿足. 請注意以下問題:既是奇函數(shù)又是偶函數(shù)的函數(shù)是否唯一? 答案是否定的,如函數(shù),,等. 9.圖中是一個算法流程圖,則輸出的n= ▲ . 答案:11 10.已知三數(shù)x+log272,x+log92,x+log32成等比數(shù)列,則公比為 ▲ . 答案:3 解析:, 本題首先應(yīng)整體觀察出三個對數(shù)值之間的關(guān)系,并由此選 定log32,得出log272=log32,log92=log32,最 后通過假設(shè)將x用log32表示. 11.已
5、知5×5數(shù)字方陣:中, 則= ▲ . 答案:-1 解析:假如題中出現(xiàn),應(yīng)注意a15中5為1的倍數(shù). 題中方陣是一個迷惑,應(yīng)排除這一干擾因素.本題的實質(zhì)就是先定義aij,后求和.應(yīng)注意 兩個求和符號∑中的上下標(biāo)是不一致的,解題應(yīng)把求和給展開. 12. 已知函數(shù)f(x)=,x∈,則滿足f(x0)>f()的x0的取值范圍為 ▲ . 答案:∪ 解析: 法1 注意到函數(shù)是偶函數(shù)故只需考慮區(qū)間上的情形. 由知函數(shù)在單調(diào)遞增, 所以在上的解集為, 結(jié)合函數(shù)是偶函數(shù)得原問題中取值范圍是. 法2 , 作出函數(shù)在上的圖象 并注意到兩函數(shù)有交點(diǎn)可得取值范圍
6、是. 13.甲地與乙地相距250公里.某天小袁從上午7∶50由甲地出發(fā)開車前往乙地辦事.在上午9∶00,10∶00,11∶00三個時刻,車上的導(dǎo)航儀都提示“如果按出發(fā)到現(xiàn)在的平均速度繼續(xù)行駛,那么還有1小時到達(dá)乙地”.假設(shè)導(dǎo)航儀提示語都是正確的,那么在上午11∶00時,小袁距乙地還有 ▲ 公里. 答案:60 解析:設(shè)從出發(fā)到上午11時行了公里,則,解得,此時小袁距乙地還有60公里. 14.定義在上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));②當(dāng)2≤x≤4時,f(x)=1-|x-3|.若函數(shù)的所有極大值點(diǎn)均落在同一條直線上,則c= ▲ . 答案
7、:1或2 解析:由已知可得:當(dāng)時,; 當(dāng)時,;當(dāng)時,, 由題意點(diǎn)共線,據(jù)得或2. 二、解答題:本大題共6小題,共計90分.請把答案寫在答題卡相應(yīng)的位置上.解答時應(yīng)寫出文字說明,證明過程或演算步驟. 15.(本題滿分14分)某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績樣本,得頻率分布表如下: 組號 分組 頻數(shù) 頻率 第一組 8 0.16 第二組 ① 0.24 第三組 15 ② 第四組 10 0.20 第五組 5 0.10 合 計 50 1.00 (1)寫出表中①②位置的數(shù)據(jù)
8、; (2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù); (3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率. 解:(1) ①②位置的數(shù)據(jù)分別為12、0.3; ………………………………………………4分 (2) 第三、四、五組參加考核人數(shù)分別為3、2、1; …………………………………8分 (3) 設(shè)上述6人為abcdef(其中第四組的兩人分別為d,e),則從6人中任取2人的所有情形為:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,d
9、e,df,ef} 共有15種.…………………………………………………………………………10分 記“2人中至少有一名是第四組”為事件A,則事件A所含的基本事件的種數(shù)有9種. …………………………………………………………………………………12分 所以,故2人中至少有一名是第四組的概率為. ……………14分 16.(本題滿分14分) 如圖,在三棱柱ABC-A1B1C1中. (1)若BB1=BC,B1C⊥A1B,證明:平面AB1C平面A1BC1; (2)設(shè)D是BC的中點(diǎn),E是A1C1上的一點(diǎn),且A1B∥平面 B1DE,求的值. 解:(1)因為BB1=BC,所以側(cè)面BCC1B1是
10、菱形,所以B1C⊥BC1. …………………3分 又因為B1C⊥A1B ,且A1B∩BC1=B,所以BC1⊥平面A1BC1, …………………5分 又B1C平面AB1C ,所以平面AB1C⊥平面A1BC1 .……………………………7分 (2)設(shè)B1D交BC1于點(diǎn)F,連結(jié)EF,則平面A1BC1∩平面B1DE=EF. 因為A1B//平面B1DE, A1B平面A1BC1,所以A1B//EF. …………………11分 所以=. 又因為=,所以=. ………………………………………14分 17.(本題滿分14分) 在△ABC中,a2+c2=2b2,其中a,b,c分別為角A,B,C
11、所對的邊長. (1)求證:B≤; (2)若,且A為鈍角,求A. 解: (1)由余弦定理,得. ……………………………………3分 因,.………………………………………………………6分 由0<B<π,得 ,命題得證. ……………………………………………7分 (2)由正弦定理,得. …………………………………………10分 因,故=1,于是.……………………………………12分 因為A為鈍角,所以. 所以(,不合,舍) .解得. …………………14分 (2)其它方法: 法1 同標(biāo)準(zhǔn)答案得到,用降冪公式得到,或 ,展開再處理,下略. 法2 由余弦定理得,結(jié)合得, ,,展
12、開后用降冪公式再合,下略. 法3 由余弦定理得,結(jié)合得, ,,下略 18.(本題滿分16分) 在平面直角坐標(biāo)系xOy中,已知橢圓(a>b>0)的離心率為,其焦點(diǎn)在圓x2+y2=1上. (1)求橢圓的方程; (2)設(shè)A,B,M是橢圓上的三點(diǎn)(異于橢圓頂點(diǎn)),且存在銳角θ,使 . (i)求證:直線OA與OB的斜率之積為定值; (ii)求OA2+OB2. 解: (1)依題意,得 c=1.于是,a=,b=1. ……………………………………2分 所以所求橢圓的方程為. ………………………………………………4分 (2) (i)設(shè)A(x1,y1),B(x2
13、,y2),則①,②.
又設(shè)M(x,y),因,故 …………7分
因M在橢圓上,故.
整理得.
將①②代入上式,并注意,得 .
所以,為定值. ………………………………………………10分
(ii),故.
又,故.
所以,OA2+OB2==3. …………………………………………16分
19.(本題滿分16分)
已知數(shù)列{an}滿足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),記
(n≥3).
(1)求證數(shù)列{bn}為等差數(shù)列,并求其通項公式;
(2)設(shè),數(shù)列{}的前n項和為Sn,求證:n 14、
故②. ……………………………………2分
②-①,得 bn-1-bn-2===1,為常數(shù),
所以,數(shù)列{bn}為等差數(shù)列. …………………………………………………………5分
因 b1==4,故 bn=n+3. ……………………………………8分
方法二 當(dāng)n≥3時,a1a2…an=1+an+1,a1a2…anan+1=1+an+2,
將上兩式相除并變形,得 .……………………………………2分
于是,當(dāng)n∈N*時,
.
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以數(shù)列{bn}為等差數(shù)列,且bn=n+3. ………… 15、……………………………………8分
(2) 方法一 因 ,…………………12分
故 .
所以 , ………15分
即 n<Sn<n+1. ………………………………………………………………………16分
方法二 因,故>1,.……………………10分
=<<,
故<,于是.……………………………………16分
第(2)問,為了結(jié)果的美觀,將Sn放縮范圍放得較寬,并且可以改為求不小于Sn的最小正整數(shù)或求不大于Sn的最大正整數(shù).
本題(2)的方法二是錯誤的,請不要采用。
注意
=<<,
故<,于是.
于是。(這一步推理是錯誤的)
20.(本題滿分16分)
設(shè) 16、函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.
(1)若=0,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求證:當(dāng)0≤x≤1時,||≤.(注:max{a,b}表示a,b中的最大值)
解:(1)由=0,得a=b. …………………………………………………………1分
故f(x)= ax3-2ax2+ax+c.
由=a(3x2-4x+1)=0,得x1=,x2=1.…………………………………………2分
列表:
x
(-∞,)
(,1)
1
(1,+∞)
+
0
-
0
+
f(x)
增
極大值
減
極小值
增
由表可得,函數(shù)f(x 17、)的單調(diào)增區(qū)間是(-∞,)及(1,+∞) .…………………………4分
(2)=3ax2-2(a+b)x+b=3.
①當(dāng)時,則在上是單調(diào)函數(shù),
所以≤≤,或≤≤,且+=a>0.
所以||≤.………………………………………………………8分
②當(dāng),即-a<b<2a,則≤≤.
(i) 當(dāng)-a<b≤時,則0<a+b≤.
所以 ==≥>0.
所以 ||≤. ……………………………………………………12分
(ii) 當(dāng)<b<2a時,則<0,即a2+b2-<0.
所以=>>0,即>.
所以 ||≤.
綜上所述:當(dāng)0≤x≤1時,||≤.……………………………16分
數(shù)學(xué)Ⅱ(附加題) 18、
21.【選做題】本題包括A,B,C,D共4小題,請從這4題中選做2小題,每小題10分,共20分.請在答題卡上準(zhǔn)確填涂題目標(biāo)記,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,求證:∠PDE=∠POC.
證明:因AE=AC,AB為直徑,
故∠OAC=∠OAE. ……………………………………………………………3分
所以∠POC=∠OAC+∠OCA=∠OAC+∠OAC=∠EAC.
又∠EAC=∠PDE,
所以,∠PDE=∠POC.………………………………… 19、………………………10分
B.選修4-2:矩陣與變換
已知圓C:在矩陣對應(yīng)的變換作用下變?yōu)闄E圓,求a,b的值.
解:設(shè)為圓C上的任意一點(diǎn),在矩陣A對應(yīng)的變換下變?yōu)榱硪粋€點(diǎn),
則 ,即 …………………………………………………4分
又因為點(diǎn)在橢圓上,所以 .
由已知條件可知, ,所以 a2=9,b2=4.
因為 a>0 ,b>0,所以 a=3,b=2. …………………………………………………10分
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,求經(jīng)過三點(diǎn)O(0,0),A(2,),B(,)
的圓的極坐標(biāo)方程.
解:設(shè)是所求圓上的任意一點(diǎn),………………………… 20、……………………3分
則,
故所求的圓的極坐標(biāo)方程為. …………………………………10分
注:亦正確.
D.選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:.
證明:因為x,y,z都是為正數(shù),所以. …………………3分
同理可得.
將上述三個不等式兩邊分別相加,并除以2,得.………10分
22.【必做題】本題滿分10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
已知函數(shù),其中a>0.
(1)若在x=1處取得極值,求a的值;
(2)若的最小值為1,求a的取值范圍.
解:(1) .
因在處取得極值,故,解得a=1 (經(jīng)檢驗).…… 21、………………4分
(2),因 ,故ax+1>0,1+x>0.
當(dāng)a≥2時,在區(qū)間上,遞增,的最小值為f(0)=1.
當(dāng)0
22、且λ1+λ2=1,線段CD與EF交于點(diǎn)P.
(1)設(shè),求;
(2)當(dāng)點(diǎn)C在拋物線上移動時,求點(diǎn)P的軌跡方程.
解:(1)過點(diǎn)A的切線方程為y=x+1. …………………………………………………1分
切線交x軸于點(diǎn)B(-1,0),交y軸交于點(diǎn)D(0,1),則D是AB的中點(diǎn).
所以. (1) ………………………3分
由T=(1+λ) T. (2)
同理由 =λ1, 得=(1+λ1), (3)
=λ2, 得=(1+λ2). (4)
將(2)、(3)、(4)式代入(1)得.
因為E、P、F三點(diǎn)共線,所以 + =1,
再由λ1+λ2=1,解之得λ=.……………………………………………………………6分
(2)由(1)得CP=2PD,D是AB的中點(diǎn),所以點(diǎn)P為△ABC的重心.
所以,x=,y=.
解得x0=3x,y0=3y-2,代入y02=4x0得,(3y-2)2=12x.
由于x0≠1,故x≠3.所求軌跡方程為(3y-2)2=12x (x≠3). ………………………10分
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會全文PPT
- 2025年寒假安全教育班會全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個人述職述廉報告
- 一文解讀2025中央經(jīng)濟(jì)工作會議精神(使社會信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報告自我評估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個人述職報告及2025年工作計劃
- 寒假計劃中學(xué)生寒假計劃安排表(規(guī)劃好寒假的每個階段)
- 中央經(jīng)濟(jì)工作會議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實踐建新功