(浙江專(zhuān)版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學(xué)案 理
《(浙江專(zhuān)版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學(xué)案 理(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第4節(jié) 直線、平面平行的判定及其性質(zhì) 最新考綱 1.以立體幾何的定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行的有關(guān)性質(zhì)與判定定理;2.能運(yùn)用公理、定理和已獲得的結(jié)論證明一些有關(guān)空間圖形的平行關(guān)系的簡(jiǎn)單命題. 知 識(shí) 梳 理 1.直線與平面平行 (1)直線與平面平行的定義 直線l與平面α沒(méi)有公共點(diǎn),則稱(chēng)直線l與平面α平行. (2)判定定理與性質(zhì)定理 文字語(yǔ)言 圖形表示 符號(hào)表示 判定定理 平面外一條直線與此平面內(nèi)的一條直線平行,則該直線平行于此平面 a?α,b?α,a∥b?a∥α 性質(zhì)定理 一條直線和一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的
2、交線與該直線平行 a∥α,a?β,α∩β=b?a∥b 2.平面與平面平行 (1)平面與平面平行的定義 沒(méi)有公共點(diǎn)的兩個(gè)平面叫做平行平面. (2)判定定理與性質(zhì)定理 文字語(yǔ)言 圖形表示 符號(hào)表示 判定定理 一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行 a?α,b?α,a∩b=P,a∥β,b∥β?α∥β 性質(zhì)定理 兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面 α∥β,a?α?a∥β 如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行 α∥β,α∩γ=a,β∩γ=b?a∥b 3.與垂直相關(guān)的
3、平行的判定 (1)a⊥α,b⊥α?a∥b. (2)a⊥α,a⊥β?α∥β. [常用結(jié)論與微點(diǎn)提醒] 1.平行關(guān)系轉(zhuǎn)化 2.平面與平面平行的六個(gè)性質(zhì) (1)兩個(gè)平面平行,其中一個(gè)平面內(nèi)的任意一條直線平行于另一個(gè)平面. (2)夾在兩個(gè)平行平面間的平行線段長(zhǎng)度相等. (3)經(jīng)過(guò)平面外一點(diǎn)有且只有一個(gè)平面與已知平面平行. (4)兩條直線被三個(gè)平行平面所截,截得的對(duì)應(yīng)線段成比例. (5)如果兩個(gè)平面分別和第三個(gè)平面平行,那么這兩個(gè)平面互相平行. (6)如果一個(gè)平面內(nèi)有兩條相交直線分別平行于另一個(gè)平面內(nèi)的兩條直線,那么這兩個(gè)平面平行. 診 斷 自 測(cè) 1.思考辨析(在括號(hào)內(nèi)打
4、“√”或“×”) (1)若一條直線和平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行.( ) (2)若直線a∥平面α,P∈α,則過(guò)點(diǎn)P且平行于直線a的直線有無(wú)數(shù)條.( ) (3)如果一個(gè)平面內(nèi)的兩條直線平行于另一個(gè)平面,那么這兩個(gè)平面平行.( ) (4)如果兩個(gè)平面平行,那么分別在這兩個(gè)平面內(nèi)的兩條直線平行或異面.( ) 解析 (1)若一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行或在平面內(nèi),故(1)錯(cuò)誤. (2)若a∥α,P∈α,則過(guò)點(diǎn)P且平行于a的直線只有一條,故(2)錯(cuò)誤. (3)如果一個(gè)平面內(nèi)的兩條直線平行于另一個(gè)平面,則這兩個(gè)平面平行或相交,故(3)錯(cuò)
5、誤. 答案 (1)× (2)× (3)× (4)√ 2.下列命題中,正確的是( ) A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過(guò)b的任何平面 B.若直線a和平面α滿(mǎn)足a∥α,那么a與α內(nèi)的任何直線平行 C.若直線a,b和平面α滿(mǎn)足a∥α,b∥α,那么a∥b D.若直線a,b和平面α滿(mǎn)足a∥b,a∥α,b?α,則b∥α 解析 根據(jù)線面平行的判定與性質(zhì)定理知,選D. 答案 D 3.設(shè)α,β是兩個(gè)不同的平面,m是直線且m?α.“m∥β”是“α∥β”的( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 解析 當(dāng)m∥β時(shí),
6、可能α∥β,也可能α與β相交. 當(dāng)α∥β時(shí),由m?α可知,m∥β. ∴“m∥β”是“α∥β”的必要不充分條件. 答案 B 4.(必修2P56練習(xí)2改編)如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),則BD1與平面AEC的位置關(guān)系為_(kāi)_______. 解析 連接BD,設(shè)BD∩AC=O,連接EO,在△BDD1中,O為BD的中點(diǎn),E為DD1的中點(diǎn),所以EO為△BDD1的中位線,則BD1∥EO,而B(niǎo)D1?平面ACE,EO?平面ACE,所以BD1∥平面ACE. 答案 平行 5.用一個(gè)截面去截正三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分別于E,F(xiàn),G,H
7、四點(diǎn),已知A1A>A1C1,則截面的形狀可以是________(把你認(rèn)為可能的結(jié)果都填上). 解析 由題意知,當(dāng)截面平行于側(cè)棱時(shí)所得截面為矩形,當(dāng)截面與側(cè)棱不平行時(shí),所得的截面是梯形. 答案 矩形或梯形 6.(2018·麗水月考)設(shè)α,β,γ為三個(gè)不同的平面,a,b為直線. (1)若α∥γ,β∥γ,則α與β的關(guān)系是________; (2)若a⊥α,b⊥β,a∥b,則α與β的關(guān)系是________. 解析 (1)由α∥γ,β∥γ?α∥β. (2)a⊥α,a∥b?b⊥α,又b⊥β,從而α∥β. 答案 (1)平行 (2)平行 考點(diǎn)一 線面、面面平行的相關(guān)命題的真假判斷
8、【例1】 (一題多解)(2017·全國(guó)Ⅰ卷)如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不平行的是( ) 解析 法一 對(duì)于選項(xiàng)B,如圖(1)所示,連接CD,因?yàn)锳B∥CD,M,Q分別是所在棱的中點(diǎn),所以MQ∥CD,所以AB∥MQ,又AB?平面MNQ,MQ?平面MNQ,所以AB∥平面MNQ.同理可證選項(xiàng)C,D中均有AB∥平面MNQ.因此A項(xiàng)不正確. 圖(1) 圖(2) 法二 對(duì)于選項(xiàng)A,其中O為BC的中點(diǎn)(如圖(2)所示),連接OQ,則OQ∥AB,因?yàn)镺Q與平面MNQ有交點(diǎn),所以
9、AB與平面MNQ有交點(diǎn),即AB與平面MNQ不平行.A項(xiàng)不正確. 答案 A 規(guī)律方法 (1)判斷與平行關(guān)系相關(guān)命題的真假,必須熟悉線、面平行關(guān)系的各個(gè)定義、定理,無(wú)論是單項(xiàng)選擇還是含選擇項(xiàng)的填空題,都可以從中先選出最熟悉最容易判斷的選項(xiàng)先確定或排除,再逐步判斷其余選項(xiàng). (2)①結(jié)合題意構(gòu)造或繪制圖形,結(jié)合圖形作出判斷. ②特別注意定理所要求的條件是否完備,圖形是否有特殊情況,通過(guò)舉反例否定結(jié)論或用反證法推斷命題是否正確. 【訓(xùn)練1】 (2018·金華測(cè)試)設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題: ①若m?α,n∥α,則m∥n; ②若α∥β,β∥γ,
10、m⊥α,則m⊥γ; ③若α∩β=n,m∥n,m∥α,則m∥β; ④若m∥α,n∥β,m∥n,則α∥β. 其中是真命題的是________(填上正確命題的序號(hào)). 解析?、賛∥n或m,n異面,故①錯(cuò)誤;易知②正確;③m∥β或m?β,故③錯(cuò)誤;④α∥β或α與β相交,故④錯(cuò)誤. 答案?、? 考點(diǎn)二 直線與平面平行的判定與性質(zhì)(多維探究) 命題角度1 直線與平面平行的判定 【例2-1】 (2016·全國(guó)Ⅲ卷)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn). (1)證明:MN∥平面PA
11、B; (2)求四面體N-BCM的體積. (1)證明 由已知得AM=AD=2. 如圖,取BP的中點(diǎn)T,連接AT,TN,由N為PC中點(diǎn)知TN∥BC,TN=BC=2. 又AD∥BC,故TN綉AM,所以四邊形AMNT為平行四邊形,于是MN∥AT. 因?yàn)锳T?平面PAB,MN?平面PAB, 所以MN∥平面PAB. (2)解 因?yàn)镻A⊥平面ABCD,N為PC的中點(diǎn), 所以N到平面ABCD的距離為PA. 如圖,取BC的中點(diǎn)E,連接AE.由AB=AC=3得AE⊥BC,AE==. 由AM∥BC得M到BC的距離為,故S△BCM=×4×=2.所以四面體N-BCM的體積VN-BCM=×S△BC
12、M×=. 命題角度2 直線與平面平行性質(zhì)定理的應(yīng)用 【例2-2】 如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為2.點(diǎn)G,E,F(xiàn),H分別是棱PB,AB,CD,PC上共面的四點(diǎn),平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)證明:GH∥EF; (2)若EB=2,求四邊形GEFH的面積. (1)證明 因?yàn)锽C∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH, 所以GH∥BC.同理可證EF∥BC,因此GH∥EF. (2)解 如圖,連接AC,BD交于點(diǎn)O,BD交EF于點(diǎn)K,連接OP,GK.因?yàn)镻A=PC,O是AC的中點(diǎn),所以PO⊥AC
13、, 同理可得PO⊥BD. 又BD∩AC=O,且AC,BD都在底面ABCD內(nèi),所以PO⊥底面ABCD.又因?yàn)槠矫鍳EFH⊥平面ABCD, 且PO?平面GEFH,所以PO∥平面GEFH. 因?yàn)槠矫鍼BD∩平面GEFH=GK, PO?平面PBD. 所以PO∥GK,且GK⊥底面ABCD, 又EF?平面ABCD, 從而GK⊥EF. 所以GK是梯形GEFH的高. 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4, 從而KB=DB=OB,即K為OB的中點(diǎn). 再由PO∥GK得GK=PO,即G是PB的中點(diǎn),且GH=BC=4.由已知可得OB=4,PO===6,所以GK=3. 故四邊形
14、GEFH的面積S=·GK=×3=18. 規(guī)律方法 (1)判斷或證明線面平行的常用方法有: ①利用反證法(線面平行的定義); ②利用線面平行的判定定理(a?α,b?α,a∥b?a∥α); ③利用面面平行的性質(zhì)定理(α∥β,a?α?a∥β); ④利用面面平行的性質(zhì)(α∥β,a?β,a∥α?a∥β). (2)利用判定定理判定線面平行,關(guān)鍵是找平面內(nèi)與已知直線平行的直線.常利用三角形的中位線、平行四邊形的對(duì)邊或過(guò)已知直線作一平面找其交線. 【訓(xùn)練2】 在四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC,CD的中點(diǎn),AC與BE交于O點(diǎn),G是線段OF上一點(diǎn).
15、 (1)求證:AP∥平面BEF; (2)求證:GH∥平面PAD. 證明 (1)連接EC, ∵AD∥BC,BC=AD, E為AD的中點(diǎn),∴BC綉AE, ∴四邊形ABCE是平行四邊形, ∴O為AC的中點(diǎn), 又∵F是PC的中點(diǎn),∴FO∥AP, 又FO?平面BEF,AP?平面BEF,∴AP∥平面BEF. (2)連接FH,OH,∵F,H分別是PC,CD的中點(diǎn), ∴FH∥PD,又PD?平面PAD,F(xiàn)H?平面PAD, ∴FH∥平面PAD. 又∵O是BE的中點(diǎn),H是CD的中點(diǎn), ∴OH∥AD,又∵AD?平面PAD,OH?平面PAD, ∴OH∥平面PAD. 又FH∩OH=
16、H,∴平面OHF∥平面PAD. 又∵GH?平面OHF,∴GH∥平面PAD. 考點(diǎn)三 面面平行的判定與性質(zhì)(變式遷移) 【例3】 (經(jīng)典母題)如圖所示,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證: (1)B,C,H,G四點(diǎn)共面; (2)平面EFA1∥平面BCHG. 證明 (1)∵G,H分別是A1B1,A1C1的中點(diǎn), ∴GH是△A1B1C1的中位線,則GH∥B1C1. 又∵B1C1∥BC, ∴GH∥BC, ∴B,C,H,G四點(diǎn)共面. (2)∵E,F(xiàn)分別為AB,AC的中點(diǎn),∴EF∥BC, ∵EF?平面BCHG,BC?平
17、面BCHG, ∴EF∥平面BCHG. 又G,E分別為A1B1,AB的中點(diǎn),A1B1綉AB, ∴A1G綉EB, ∴四邊形A1EBG是平行四邊形,∴A1E∥GB. ∵A1E?平面BCHG,GB?平面BCHG, ∴A1E∥平面BCHG.又∵A1E∩EF=E, ∴平面EFA1∥平面BCHG. 【變式遷移1】 如圖,在本例條件下,若點(diǎn)D為BC1的中點(diǎn),求證:HD∥平面A1B1BA. 證明 如圖所示,連接A1B. ∵D為BC1的中點(diǎn),H為A1C1的中點(diǎn),∴HD∥A1B, 又HD?平面A1B1BA, A1B?平面A1B1BA, ∴HD∥平面A1B1BA. 【變式遷移2】
18、在本例中,若將條件“E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn)”變?yōu)椤包c(diǎn)D,D1分別是AC,A1C1上的點(diǎn),且平面BC1D∥平面AB1D1”,試求的值. 解 連接A1B交AB1于O,連接OD1. 由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,所以BC1∥D1O,則==1. 又由題設(shè)=, ∴=1,即=1. 規(guī)律方法 (1)判定面面平行的主要方法 ①利用面面平行的判定定理. ②線面垂直的性質(zhì)(垂直于同一直線的兩平面平行). (2)面面平行的性質(zhì)定理 ①兩平面平行,則一個(gè)平面內(nèi)的直線平行于另一平面.
19、 ②若一平面與兩平行平面相交,則交線平行. 提醒 利用面面平行的判定定理證明兩平面平行時(shí)需要說(shuō)明是一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行. 【訓(xùn)練3】 (2016·山東卷)在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB. (1)已知AB=BC,AE=EC.求證:AC⊥FB; (2)已知G,H分別是EC和FB的中點(diǎn).求證:GH∥平面ABC. 證明 (1)因?yàn)镋F∥DB,所以EF與DB確定平面BDEF, 圖① 如圖①,連接DE.因?yàn)锳E=EC,D為AC的中點(diǎn), 所以DE⊥AC.同理可得BD⊥AC. 又BD∩DE=D, 所以AC⊥平面BDEF. 因?yàn)镕B?平面BD
20、EF, 所以AC⊥FB. (2)如圖②,設(shè)FC的中點(diǎn)為I,連接GI,HI. 圖② 在△CEF中,因?yàn)镚是CE的中點(diǎn), 所以GI∥EF.又EF∥DB, 所以GI∥DB. 在△CFB中,因?yàn)镠是FB的中點(diǎn),所以HI∥BC. 又HI∩GI=I, 所以平面GHI∥平面ABC, 因?yàn)镚H?平面GHI, 所以GH∥平面ABC. 基礎(chǔ)鞏固題組 一、選擇題 1.設(shè)m,n是不同的直線,α,β是不同的平面,且m,n?α,則“α∥β”是“m∥β且n∥β”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析 若m,n?α,
21、α∥β,則m∥β且n∥β;反之若m,n?α,m∥β且n∥β,則α與β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要條件. 答案 A 2.有下列命題: ①若直線l平行于平面α內(nèi)的無(wú)數(shù)條直線,則直線l∥α; ②若直線a在平面α外,則a∥α; ③若直線a∥b,b∥α,則a∥α; ④若直線a∥b,b∥α,則a平行于平面α內(nèi)的無(wú)數(shù)條直線. 其中真命題的個(gè)數(shù)是( ) A.1 B.2 C.3 D.4 解析 命題①l可以在平面α內(nèi),不正確;命題②直線a與平面α可以是相交關(guān)系,不正確;命題③a可以在平面α內(nèi),不正確;命題④正確. 答案 A 3.如圖所示的三棱柱ABC-A
22、1B1C1中,過(guò)A1B1的平面與平面ABC交于DE,則DE與AB的位置關(guān)系是( ) A.異面 B.平行 C.相交 D.以上均有可能 解析 在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB?平面ABC,A1B1?平面ABC, ∴A1B1∥平面ABC,∵過(guò)A1B1的平面與平面ABC交于DE.∴DE∥A1B1,∴DE∥AB. 答案 B 4.下列四個(gè)正方體圖形中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的序號(hào)是( ) A.①③ B.①④ C.②③ D.②④ 解析?、僦?,易知NP∥AA′, MN∥A
23、′B, ∴平面MNP∥平面AA′B, 可得出AB∥平面MNP(如圖). ④中,NP∥AB,能得出AB∥平面MNP.在②③中不能判定AB∥平面MNP. 答案 B 5.(2018·嘉興測(cè)試)已知m,n表示兩條不同直線,α表示平面,下列說(shuō)法正確的是( ) A.若m∥α,n∥α,則m∥n B.若m⊥α,n?α,則m⊥n C.若m⊥α,m⊥n,則n∥α D.若m∥α,m⊥n,則n⊥α 解析 若m∥α,n∥α,則m,n平行、相交或異面,A錯(cuò);若m⊥α,n?α,則m⊥n,因?yàn)橹本€與平面垂直時(shí),它垂直于平面內(nèi)任一直線,B正確;若m⊥α,m⊥n,則n∥α或n?α,C錯(cuò);若m∥α,m⊥n
24、,則n與α可能相交,可能平行,也可能n?α,D錯(cuò). 答案 B 6.(2018·湖州調(diào)研)已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面( ) A.若m∥α,m∥β,則α∥β B.若m⊥α,m∥β,則α∥β C.若m⊥α,n∥α,則m∥n D.若m⊥α,n⊥α,則m∥n 解析 若m∥α,m∥β,則α,β可能平行或相交,A錯(cuò)誤;若m⊥α,m∥β,則α⊥β,B錯(cuò)誤;若m⊥α,n⊥α,則m⊥n,C錯(cuò)誤; 若m⊥α,n⊥α,則m∥n,D正確,故選D. 答案 D 二、填空題 7.(2017·臺(tái)州月考)在四面體A-BCD中,M,N分別是△ACD,△BCD的重心,則MN與平面
25、ABD的位置關(guān)系是________;與平面ABC的位置關(guān)系是________. 解析 如圖,取CD的中點(diǎn)E. 連接AE,BE,由于M,N分別是△ACD,△BCD的重心,所以AE,BE分別過(guò)M,N,則EM∶MA=1∶2,EN∶BN=1∶2, 所以MN∥AB.因?yàn)锳B?平面ABD,MN?平面ABD,AB?平面ABC,MN?平面ABC,所以MN∥平面ABD, MN∥平面ABC. 答案 平行 平行 8.(2017·寧波調(diào)研)如圖,四棱錐P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點(diǎn),則BE與平面PAD的位置關(guān)系為_(kāi)_______
26、. 解析 取PD的中點(diǎn)F,連接EF,AF, 在△PCD中,EF綉CD. 又∵AB∥CD且CD=2AB, ∴EF綉AB, ∴四邊形ABEF是平行四邊形, ∴EB∥AF. 又∵EB?平面PAD,AF?平面PAD, ∴BE∥平面PAD. 答案 平行 9.設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題: ①若m?α,n∥α,則m∥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;③若α∩β=n,m∥n,則m∥α,且m∥β;④若α⊥γ,β⊥γ,則α∥β. 其中真命題的個(gè)數(shù)為_(kāi)_________. 解析 若m?α,n∥α,則m,n可能平行或異面,①錯(cuò)誤;若
27、α∥β,β∥γ,則α∥γ,又m⊥α,則m⊥γ,②正確;若α∩β=n,m∥n,則m∥α或m∥β或m?α或m?β,③錯(cuò)誤;若α⊥γ,β⊥γ,則α,β可能平行或相交,④錯(cuò)誤,則真命題個(gè)數(shù)為1. 答案 1 10.如圖所示,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D,DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH及其內(nèi)部運(yùn)動(dòng),則M只需滿(mǎn)足條件________時(shí),就有MN∥平面B1BDD1.(注:請(qǐng)?zhí)钌夏阏J(rèn)為正確的一個(gè)條件即可,不必考慮全部可能情況) 解析 連接HN,F(xiàn)H,F(xiàn)N,則FH∥DD1,HN∥BD, ∴平面FHN∥平面B1BDD1,只需M∈
28、FH,則MN?平面FHN,∴MN∥平面B1BDD1. 答案 點(diǎn)M在線段FH上(或點(diǎn)M與點(diǎn)H重合) 三、解答題 11.一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示. (1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由); (2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論. 解 (1)點(diǎn)F,G,H的位置如圖所示. (2)平面BEG∥平面ACH,證明如下:因?yàn)锳BCD-EFGH為正方體, 所以BC∥FG,BC=FG, 又FG∥EH,F(xiàn)G=EH,所以BC∥EH,BC=EH,于是四邊形BCHE為平行四邊形,所以BE∥CH.又CH?平面ACH,B
29、E?平面ACH, 所以BE∥平面ACH.同理BG∥平面ACH. 又BE∩BG=B,所以平面BEG∥平面ACH. 12.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn). (1)證明:PB∥平面AEC; (2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求A到平面PBC的距離. (1)證明 設(shè)BD與AC的交點(diǎn)為O,連接EO. 因?yàn)锳BCD為矩形,所以O(shè)為BD的中點(diǎn).又E為PD的中點(diǎn),所以EO∥PB.又因?yàn)镋O?平面AEC,PB?平面AEC,所以PB∥平面AEC. (2)解 V=PA·AB·AD=AB. 由V=,可得AB=.作AH⊥P
30、B交PB于H. 由題設(shè)知AB⊥BC,PA⊥BC,且PA∩AB=A,所以BC⊥平面PAB,又AH?平面PAB,所以BC⊥AH,又PB∩BC=B,故AH⊥平面PBC.在Rt△PAB中,由勾股定理可得PB=,所以AH==.所以A到平面PBC的距離為. 能力提升題組 13.給出下列關(guān)于互不相同的直線l,m,n和平面α,β,γ的三個(gè)命題:①若l與m為異面直線,l?α,m?β,則α∥β; ②若α∥β,l?α,m?β,則l∥m; ③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n. 其中真命題的個(gè)數(shù)為( ) A.3 B.2 C.1 D.0 解析?、僦挟?dāng)α與β不平行時(shí),也可
31、能存在符合題意的l,m;②中l(wèi)與m也可能異面;③中?l∥n,同理,l∥m,則m∥n,正確. 答案 C 14.在四面體ABCD中,截面PQMN是正方形,則在下列結(jié)論中,錯(cuò)誤的是( ) A.AC⊥BD B.AC∥截面PQMN C.AC=BD D.異面直線PM與BD所成的角為45° 解析 因?yàn)榻孛鍼QMN是正方形,所以MN∥QP,又PQ?平面ABC,MN?平面ABC,則MN∥平面ABC,由線面平行的性質(zhì)知MN∥AC,又MN?平面PQMN,AC?平面PQMN,則AC∥截面PQMN,同理可得MQ∥BD,又MN⊥QM,則AC⊥BD,故A,B正確.又因?yàn)锽D∥MQ,所以異面直線PM與BD
32、所成的角等于PM與QM所成的角,即為45°,故D正確. 答案 C 15.(2018·紹興一中適應(yīng)性檢測(cè))如圖所示,棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,設(shè)D是A1C1上的點(diǎn)且A1B∥平面B1CD,則A1D∶DC1的值為_(kāi)_______. 解析 設(shè)BC1∩B1C=O,連接OD. ∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD, ∴A1B∥OD,∵四邊形BCC1B1是菱形,∴O為BC1的中點(diǎn),∴D為A1C1的中點(diǎn),則A1D∶DC1=1. 答案 1 16.如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.設(shè)AB1的中點(diǎn)為D,B1C∩B
33、C1=E.求證: (1)DE∥平面AA1C1C; (2)BC1⊥AB1. 證明 (1)由題意知,E為B1C的中點(diǎn),又D為AB1的中點(diǎn),因此DE∥AC. 又因?yàn)镈E?平面AA1C1C,AC?平面AA1C1C, 所以DE∥平面AA1C1C. (2)因?yàn)槔庵鵄BC-A1B1C1是直三棱柱, 所以CC1⊥平面ABC. 因?yàn)锳C?平面ABC,所以AC⊥CC1. 又因?yàn)锳C⊥BC,CC1?平面BCC1B1, BC?平面BCC1B1,BC∩CC1=C, 所以AC⊥平面BCC1B1. 又因?yàn)锽C1?平面BCC1B1, 所以BC1⊥AC. 因?yàn)锽C=CC1, 所以矩形BCC1B
34、1是正方形, 因此BC1⊥B1C. 因?yàn)锳C,B1C?平面B1AC,AC∩B1C=C, 所以BC1⊥平面B1AC. 又因?yàn)锳B1?平面B1AC, 所以BC1⊥AB1. 17.(2018·杭州七校聯(lián)考)如圖,在四棱臺(tái)ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°. (1)證明:AA1⊥BD; (2)證明:CC1∥平面A1BD. 證明 (1)因?yàn)镈1D⊥平面ABCD,且BD?平面ABCD,所以D1D⊥BD. 又AB=2AD,∠BAD=60°,在△ABD中,由余弦定理,得BD=AD, 所以AD2+BD2=AB2,即AD⊥BD. 又AD∩D1D=D,所以BD⊥平面ADD1A1. 又AA1?平面ADD1A1,所以AA1⊥BD. (2)如圖,連接AC,A1C1. 設(shè)AC∩BD=E,連接EA1. 因?yàn)樗倪呅蜛BCD為平行四邊形, 所以EC=AC. 由棱臺(tái)定義及AB=2AD=2A1B1知,A1C1∥EC且A1C1=EC, 所以四邊形A1ECC1為平行四邊形, 因此CC1∥EA1. 又EA1?平面A1BD,CC1?平面A1BD, 所以CC1∥平面A1BD. 20
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中語(yǔ)文作文素材:30篇文學(xué)名著開(kāi)場(chǎng)白
- 初中語(yǔ)文答題技巧:現(xiàn)代文閱讀-說(shuō)明文閱讀知識(shí)點(diǎn)總結(jié)
- 初中語(yǔ)文作文十大??荚?huà)題+素材
- 初中語(yǔ)文作文素材:描寫(xiě)冬天的好詞、好句、好段總結(jié)
- 初中語(yǔ)文必考名著總結(jié)
- 初中語(yǔ)文作文常見(jiàn)主題總結(jié)
- 初中語(yǔ)文考試??济偨Y(jié)
- 初中語(yǔ)文必考50篇古詩(shī)文默寫(xiě)
- 初中語(yǔ)文易錯(cuò)易混詞總結(jié)
- 初中語(yǔ)文228條文學(xué)常識(shí)
- 初中語(yǔ)文作文素材:30組可以用古詩(shī)詞當(dāng)作文標(biāo)題
- 初中語(yǔ)文古代文化常識(shí)七大類(lèi)別總結(jié)
- 初中語(yǔ)文作文素材:100個(gè)文藝韻味小短句
- 初中語(yǔ)文閱讀理解33套答題公式
- 初中語(yǔ)文228條文學(xué)常識(shí)總結(jié)