2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理

上傳人:xt****7 文檔編號:106904491 上傳時間:2022-06-14 格式:DOC 頁數:7 大?。?.52MB
收藏 版權申訴 舉報 下載
2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理_第1頁
第1頁 / 共7頁
2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理_第2頁
第2頁 / 共7頁
2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理》由會員分享,可在線閱讀,更多相關《2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理(7頁珍藏版)》請在裝配圖網上搜索。

1、2022年高考數學第二輪復習 專題七 概率與統(tǒng)計第2講 概率、統(tǒng)計與統(tǒng)計案例 理 真題試做 1.(xx·山東高考,理4)采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調查.為此將他們隨機編號為1,2,…,960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為9.抽到的32人中,編號落入區(qū)間[1,450]的人做問卷A,編號落入區(qū)間[451,750]的人做問卷B,其余的人做問卷C.則抽到的人中,做問卷B的人數為(  ). A.7 B.9 C.10 D.15 2.(xx·陜西高考,理6)從甲乙兩個城市分別隨機抽取16臺自動售貨機,對其銷售額進行統(tǒng)計,統(tǒng)計數據用莖

2、葉圖表示(如圖所示).設甲乙兩組數據的平均數分別為,,中位數分別為m甲,m乙,則(  ). A.<,m甲>m乙 B.<,m甲<m乙 C.>,m甲>m乙 D.>,m甲<m乙 3.(xx·廣東高考,理7)從個位數與十位數之和為奇數的兩位數中任取一個,其個位數為0的概率是(  ). A. B. C. D. 4.(xx·湖北高考,理20)根據以往的經驗,某工程施工期間的降水量X(單位:mm)對工期的影響如下表: 降水量X X<300 300≤X<700 700≤X<900 X≥900 工期延誤天數Y 0 2 6 10 歷年氣象資料表明,該工

3、程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9.求: (1)工期延誤天數Y的均值與方差; (2)在降水量X至少是300的條件下,工期延誤不超過6天的概率. 考向分析 概率部分主要考查了概率的概念、互斥事件的概率加法公式、對立事件的求法,以及古典概型的計算,均屬容易題.統(tǒng)計部分選擇、填空都是獨立考查本節(jié)知識,解答題均與概率的分布列綜合.預測下一步概率部分會更加注重實際問題背景,考查分析、推理能力,統(tǒng)計部分在直方圖、莖葉圖都可單獨命題,且多為一個小題,解答題仍會與分布列結合. 熱點例析 熱點一 隨機事件的概率 【例1】(xx·江西高考,理18)如圖

4、,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個點中隨機選取3個點,將這3個點及原點O兩兩相連構成一個“立體”,記該“立體”的體積為隨機變量V(如果選取的3個點與原點在同一個平面內,此時“立體”的體積V=0). (1)求V=0的概率; (2)求V的分布列及數學期望E(V). 規(guī)律方法 高考中,概率解答題一般有兩大方向.一、以頻率分布直方圖為載體,考查統(tǒng)計學中常見的數據特征:如平均數、中位數、頻數、頻率等或古典概型;二、以應用題為載體,考查條件概率、獨立事件的概率、隨機變量的期望與方差等.需要注意第一種方

5、向的考查. 變式訓練1 (xx·北京昌平二模,理16)某游樂場將要舉行狙擊移動靶比賽.比賽規(guī)則是:每位選手可以選擇在A區(qū)射擊3次或選擇在B區(qū)射擊2次,在A區(qū)每射中一次得3分,射不中得0分;在B區(qū)每射中一次得2分,射不中得0分.已知參賽選手甲在A區(qū)和B區(qū)每次射中移動靶的概率分別是和p(0<p<1). (1)若選手甲在A區(qū)射擊,求選手甲至少得3分的概率; (2)我們把在A、B兩區(qū)射擊得分的數學期望高者作為選擇射擊區(qū)的標準,如果選手甲最終選擇了在B區(qū)射擊,求p的取值范圍. 熱點二 古典概型 【例2】(xx·上海高考,理11)三位同學參加跳高、跳遠、鉛球項目的比賽.若每人都選擇其中兩個項目

6、,則有且僅有兩人選擇的項目完全相同的概率是__________(結果用最簡分數表示). 規(guī)律方法 較為簡單的問題可以直接使用古典概型公式計算,較為復雜的概率問題的處理方法:一是轉化為幾個互斥事件的和,利用互斥事件的加法公式進行求解;二是采用間接解法,先求事件A的對立事件的概率,再由P(A)=1-P()求事件A的概率. 變式訓練2 (1)(xx·江蘇高考,6)現有10個數,它們能構成一個以1為首項,-3為公比的等比數列,若從這10個數中隨機抽取一個數,則它小于8的概率是__________. (2)先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標有點數1,2,3,4,5,6),骰子朝上

7、的面的點數分別為X,Y,則log2XY=1的概率為(  ). A. B. C. D. 思想滲透 數形結合思想——解答統(tǒng)計問題 用數形結合思想解答的統(tǒng)計問題主要是通過頻率分布直方圖研究數據分布的總體趨勢. 求解時注意的問題: (1)頻率分布直方圖中縱軸表示,每個小長方形的面積等于這一組的頻率. (2)在頻率分布直方圖中,組距是一個固定值,故各小長方形高的比就是頻率之比. 下表給出了某校120名12歲男孩的身高資料.(單位:cm) 區(qū)間 界限 [122,126) [126,130) [130,134) [134,138) [138,142

8、) 人數 5 8 10 22 33 區(qū)間 界限 [142,146) [146,150) [150,154) [154,158) 人數 20 11 6 5 (1)列出樣本的頻率分布表; (2)畫出頻率分布直方圖; (3)根據樣本的頻率分布圖,估計身高小于134 cm的人數約占總人數的百分比. 解:(1)頻率分布表如下: 區(qū)間人數 頻數 頻率 [122,126) 5 [126,130) 8 [130,134) 10 [134,138) 22 [138,142) 33 [142,146) 20

9、[146,150) 11 [150,154) 6 [154,158) 5 (2)頻率分布直方圖如圖: (3)由圖估計,身高小于134 cm的學生數約占總數的19%. 1.某企業(yè)共有職工150人,其中高級職稱15人,中級職稱45人,初級職稱90人,現采用分層抽樣抽取容量為30的樣本,則抽取各職稱的人數分別為(  ). A.5,10,15 B.3,9,18 C.3,10,17 D.5,9,16 2.(xx·江西高考,理9)樣本(x1,x2,…,xn)的平均數為,樣本(y1,y2,…,ym)的平均數為(≠).若樣本(x1,x2,…

10、,xn,y1,y2,…,ym)的平均數=α+(1-α),其中0<α<,則n,m的大小關系為(  ). A.n<m B.n>m C.n=m D.不能確定 3.(xx·安徽高考,理5)甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條形統(tǒng)計圖如圖所示,則(  ). A.甲的成績的平均數小于乙的成績的平均數 B.甲的成績的中位數等于乙的成績的中位數 C.甲的成績的方差小于乙的成績的方差 D.甲的成績的極差小于乙的成績的極差 4.在抽查某產品的尺寸的過程中,將其尺寸分成若干組,[a,b]是其中一組,抽查出的個體數在該組上的頻率是m,該組在頻率分布直方圖上

11、的高為h,則|a-b|等于(  ). A.h·m B. C. D.與m,h無關 5.(xx·浙江鎮(zhèn)海中學模擬,15)用三種不同的顏色,將如圖所示的四個區(qū)域涂色,每種顏色至少用1次,則相鄰的區(qū)域不涂同一種顏色的概率為__________. 6.有一種密碼,明文是由三個字符組成,密碼是由明文對應的五個數字組成,編碼規(guī)則如下表:明文由表中每一排取一個字符組成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對應的密碼由明文對應的數字按相同的次序排列組成. 第一排 明文字符 A B C D 密碼字符 11 12 13

12、 14 第二排 明文字符 E F G H 密碼字符 21 22 23 24 第三排 明文字符 M N P Q 密碼字符 1 2 3 4 設隨機變量ξ表示密碼中不同數字的個數. (1)求P(ξ=2); (2)求隨機變量ξ的分布列和數學期望. 7.某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和系統(tǒng)B在任意時刻發(fā)生故障的概率分別為和p. (1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值; (2)設系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數為隨機變量ξ,求ξ的概率分布列及數學期望E(ξ). 參考答案 命題調研

13、·明晰考向 真題試做 1.C 解析:由題意可得,抽樣間隔為30,區(qū)間[451,750]恰好為10個完整的組,所以做問卷B的有10人,故選C. 2.B 解析:由題圖可得==21.562 5,m甲=20, ==28.562 5,m乙=29, 所以<,m甲<m乙. 故選B. 3.D 解析:在個位數與十位數之和為奇數的兩位數中: (1)當個位數是偶數時,由分步計數乘法原理知,共有5×5=25個; (2)當個位數是奇數時,由分步計數乘法原理知,共有4×5=20個. 綜上可知,基本事件總數共有25+20=45(個), 滿足條件的基本事件有5×1=5(個), ∴概率P==. 4.解

14、:(1)由已知條件和概率的加法公式有: P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4, P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2. P(X≥900)=1-P(X<900)=1-0.9=0.1. 所以Y的分布列為: Y 0 2 6 10 P 0.3 0.4 0.2 0.1 于是,E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3; D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故

15、工期延誤天數Y的均值為3,方差為9.8. (2)由概率的加法公式,P(X≥300)=1-P(X<300)=0.7, 又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6. 由條件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)===. 故在降水量X至少是300 mm的條件下,工期延誤不超過6天的概率是. 精要例析·聚焦熱點 熱點例析 【例1】解:(1)從6個點中隨機選取3個點總共有=20種取法,選取的3個點與原點在同一個平面內的取法有種,因此V=0的概率為P(V=0)==. (2)V的所有可能取值為0,,,,,因此V的分布列為

16、V 0 P 由V的分布列可得 E(V)=0×+×+×+×+×=. 【變式訓練1】解:(1)設“選手甲在A區(qū)射擊得0分”為事件M,“選手甲在A區(qū)射擊至少得3分”為事件N,則事件M與事件N為對立事件,P(M)=·0·3=, P(N)=1-P(M)=1-=. (2)設選手甲在A區(qū)射擊的得分為ξ,則ξ的可能取值為0,3,6,9. P(ξ=0)=3=;P(ξ=3)=··2=; P(ξ=6)=·2·=; P(ξ=9)=3=. 所以ξ的分布列為 ξ 0 3 6 9 P ∴E(ξ)=0×+3×+6×+9×=. 設選手甲在

17、B區(qū)射擊的得分為η,則η的可能取值為0,2,4. P(η=0)=(1-p)2;P(η=2)=·p·(1-p)=2p(1-p);P(η=4)=p2. 所以η的分布列為 η 0 2 4 P (1-p)2 2p(1-p) p2 ∴E(η)=0×(1-p)2+2·2p(1-p)+4·p2=4p. 根據題意,有E(η)>E(ξ), ∴4p>,∴<p<1. 【例2】 解析:若每人都選擇兩個項目,共有不同的選法種,而有兩人選擇的項目完全相同的選法有種,故填. 【變式訓練2】(1) 解析:由題意可知,這10個數分別為1,-3,9,-27,81,-35,36,-37,38,-39,

18、在這10個數中,比8小的有5個負數和1個正數,故由古典概型的概率公式得所求概率P==. (2)C 解析:總事件數為36種,而滿足條件的(X,Y)為(1,2),(2,4),(3,6),共3種情形.p==. 創(chuàng)新模擬·預測演練 1.B 解析:高級、中級、初級職稱的人數所占比例分別為=0.1,=0.3,=0.6.故選B. 2.A 解析:由已知,得x1+x2+…+xn=n,y1+y2+…+ym=m, ===α+(1-α), 整理,得(-)[αm+(α-1)n]=0, ∵≠, ∴αm+(α-1)n=0,即=. 又0<α<,∴0<<1, ∴0<<1. 又n,m∈N+,∴n<m. 3

19、.C 解析:由圖可得,==6,==6,故A錯;而甲的成績的中位數為6,乙的成績的中位數為5,故B錯; ==2, ==2.4,故C正確;甲的成績的極差為4,乙的成績的極差也為4,故D錯. 4.C 解析:頻率分布直方圖中,=高度,所以|a-b|=,故選C. 5. 解析:依題意有兩個區(qū)域涂同一種顏色,另兩個區(qū)域涂另兩種顏色. 當涂同一種顏色的兩個區(qū)域相鄰時,有種涂法; 當涂同一種顏色的兩個區(qū)域不相鄰時,有×3×=18種涂法; 故相鄰的區(qū)域不涂同一種顏色的概率為. 6.解:(1)密碼中不同數字的個數為2的事件為密碼中只有兩個數字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,

20、2列中的數字作為密碼. ∴P(ξ=2)==. (2)由題意可知ξ的取值為2,3,4三種情形. 若ξ=3,注意表格的第一排總含有數字1,第二排總含有數字2,則密碼中只可能取數字1,2,3或1,2,4. ∴P(ξ=3)==. 若ξ=4,則P(ξ=4)==或P(ξ=4)=1--=, ∴ξ的分布列為: ξ 2 3 4 P ∴E(ξ)=2×+3×+4×=. 7.解:(1)設“至少有一個系統(tǒng)不發(fā)生故障”為事件C,那么 1-P()=1-·p=. 解得p=. (2)由題意,P(ξ=0)=3=, P(ξ=1)=2·=, P(ξ=2)=·2=, P(ξ=3)=3=. 所以,隨機變量ξ的概率分布列為 ξ 0 1 2 3 P 故隨機變量ξ的數學期望: E(ξ)=0×+1×+2×+3×=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲