(魯京遼)2022-2023學(xué)年高中數(shù)學(xué) 第一章 立體幾何初步 1.2.2 第2課時(shí) 直線與平面平行學(xué)案 新人教B版必修2
《(魯京遼)2022-2023學(xué)年高中數(shù)學(xué) 第一章 立體幾何初步 1.2.2 第2課時(shí) 直線與平面平行學(xué)案 新人教B版必修2》由會(huì)員分享,可在線閱讀,更多相關(guān)《(魯京遼)2022-2023學(xué)年高中數(shù)學(xué) 第一章 立體幾何初步 1.2.2 第2課時(shí) 直線與平面平行學(xué)案 新人教B版必修2(15頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(魯京遼)2022-2023學(xué)年高中數(shù)學(xué) 第一章 立體幾何初步 1.2.2 第2課時(shí) 直線與平面平行學(xué)案 新人教B版必修2 學(xué)習(xí)目標(biāo) 1.掌握直線與平面的三種位置關(guān)系,會(huì)判斷直線與平面的位置關(guān)系.2.學(xué)會(huì)用圖形語言、符號(hào)語言表示三種位置關(guān)系.3.掌握直線與平面平行的判定定理和性質(zhì)定理,并能利用兩個(gè)定理解決空間中的平行關(guān)系問題. 知識(shí)點(diǎn)一 直線與平面的位置關(guān)系 直線與平面的位置關(guān)系 定義 圖形語言 符號(hào)語言 直線在平面內(nèi) 有無數(shù)個(gè)公共點(diǎn) a?α 直線與平面相交 有且只有一個(gè)公共點(diǎn) a∩α=A 直線與平面平行 沒有公共點(diǎn) a∥α 知識(shí)點(diǎn)二 直線與
2、平面平行的判定 思考1 如圖,一塊矩形木板ABCD的一邊AB在平面α內(nèi),把這塊木板繞AB轉(zhuǎn)動(dòng),在轉(zhuǎn)動(dòng)過程中,AB的對(duì)邊CD(不落在α內(nèi))和平面α有何位置關(guān)系? 答案 平行. 思考2 如圖,平面α外的直線a平行于平面α內(nèi)的直線b.這兩條直線共面嗎?直線a與平面α相交嗎? 答案 由于直線a∥b,所以兩條直線共面,直線a與平面α不相交. 梳理 直線與平面平行的判定定理 文字語言 符號(hào)表示 圖形表示 如果不在一個(gè)平面內(nèi)一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行 ?l∥α 知識(shí)點(diǎn)三 直線與平面平行的性質(zhì) 思考1 如圖,直線l∥平面α,直線a?平面α,直
3、線l與直線a一定平行嗎?為什么? 答案 不一定,因?yàn)檫€可能是異面直線. 思考2 如圖,直線l∥平面α,直線l?平面β,平面α∩平面β=直線m,滿足以上條件的平面β有多少個(gè)?直線l,m有什么位置關(guān)系? 答案 無數(shù)個(gè),l∥m. 梳理 直線與平面平行的性質(zhì)定理 文字語言 符號(hào)表示 圖形表示 如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和兩平面的交線平行 ?l∥m 1.若直線l上有兩點(diǎn)到平面α的距離相等,則l∥平面α.( × ) 2.若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線平行.( × ) 3.兩條平行線中的一條直線
4、與一個(gè)平面平行,那么另一條也與這個(gè)平面平行.( × ) 類型一 直線與平面平行的判定 例1 已知公共邊為AB的兩個(gè)全等的矩形ABCD和ABEF不在同一平面內(nèi),P,Q分別是對(duì)角線AE,BD上的點(diǎn),且AP=DQ(如圖).求證:PQ∥平面CBE. 證明 方法一 作PM∥AB交BE于點(diǎn)M,作QN∥AB交BC于點(diǎn)N,連接MN,如圖, 則PM∥QN,=,=. ∵EA=BD,AP=DQ, ∴EP=BQ. ∴=, 又AB=CD,∴PM=QN, ∴四邊形PMNQ是平行四邊形, ∴PQ∥MN. 又PQ?平面CBE, MN?平面CBE, ∴PQ∥平面CBE. 方法二 如圖所示
5、,連接AQ并延長(zhǎng)交BC的延長(zhǎng)線于K,連接EK. ∵AE=BD,AP=DQ, ∴PE=BQ, ∴=, 又AD∥BK, ∴=,∴=, ∴PQ∥EK, 又PQ?平面BCE,EK?平面BCE,∴PQ∥平面BCE. 反思與感悟 證明直線與平面平行的兩種方法 (1)定義法:證明直線與平面沒有公共點(diǎn),一般直接證明較為困難,往往借助于反證法來證明. (2)定理法:平面外一條直線與平面內(nèi)的一條直線平行. 跟蹤訓(xùn)練1 如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是BC,CC1,BB1的中點(diǎn),求證:EF∥平面AD1G. 證明 連接BC1,則由E,F(xiàn)分別是BC,CC1的中
6、點(diǎn)知,EF∥BC1. 又AB綊A1B1綊D1C1, 所以四邊形ABC1D1是平行四邊形, 所以BC1∥AD1,所以EF∥AD1. 又EF?平面AD1G,AD1?平面AD1G, 所以EF∥平面AD1G. 類型二 線面平行的性質(zhì)的應(yīng)用 例2 如圖,用平行于四面體ABCD的一組對(duì)棱AB,CD的平面截此四面體,求證:截面MNPQ是平行四邊形. 證明 因?yàn)锳B∥平面MNPQ, 平面ABC∩平面MNPQ=MN,且AB?平面ABC, 所以由線面平行的性質(zhì)定理知,AB∥MN. 同理AB∥PQ, 所以MN∥PQ.同理可得MQ∥NP. 所以截面MNPQ是平行四邊形. 引申探究
7、 1.若本例條件不變,求證:=. 證明 由例1知:PQ∥AB,∴=. 又QM∥DC,∴=, ∴=. 2.若本例中添加條件:AB⊥CD,AB=10,CD=8,且BP∶PD=1∶1,求四邊形MNPQ的面積. 解 由例1知,四邊形MNPQ是平行四邊形, ∵AB⊥CD,∴PQ⊥QM,∴四邊形MNPQ是矩形. 又BP∶PD=1∶1,∴PQ=5,QM=4, ∴四邊形MNPQ的面積為5×4=20. 反思與感悟 (1)利用線面平行的性質(zhì)定理解題的步驟 (2)運(yùn)用線面平行的性質(zhì)定理時(shí),應(yīng)先確定線面平行,再尋找過已知直線的平面與這個(gè)平面相交的交線,然后確定線線平行. 跟蹤訓(xùn)練2 如圖,正
8、方體ABCD-A1B1C1D1中,AB=2,點(diǎn)E為AD的中點(diǎn),點(diǎn)F在CD上,若EF∥平面AB1C,則線段FE的長(zhǎng)度等于________. 答案 解析 ∵EF∥平面AB1C,又平面ADC∩平面AB1C=AC,EF?平面ADC,∴EF∥AC,∵E是AD的中點(diǎn), ∴EF=AC=×2=. 類型三 線面平行的綜合應(yīng)用 例3 如圖所示,已知P是?ABCD所在平面外一點(diǎn),M,N分別是AB,PC的中點(diǎn),平面PBC∩平面PAD=l. (1)求證:l∥BC; (2)MN與平面PAD是否平行?試證明你的結(jié)論. (1)證明 因?yàn)锽C∥AD,BC?平面PAD,AD?平面PAD, 所以BC∥平
9、面PAD. 又因?yàn)槠矫鍼BC∩平面PAD=l,且BC?平面PBC,所以BC∥l. (2)解 平行.證明如下: 如圖,取PD的中點(diǎn)E,連接AE,NE, 可以證得NE∥AM且NE=AM, 所以四邊形MNEA是平行四邊形,所以MN∥AE. 又AE?平面PAD,MN?平面PAD, 所以MN∥平面PAD. 反思與感悟 判定定理與性質(zhì)定理常常交替使用,即先通過線線平行推出線面平行,再通過線面平行推出線線平行,復(fù)雜的題目還可以繼續(xù)推下去,我們可稱它為平行鏈,如下: 線線平行線面平行線線平行. 跟蹤訓(xùn)練3 如圖所示,四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),
10、在DM上取一點(diǎn)G,過G和AP作平面交平面BDM于GH. 求證:GH∥平面PAD. 證明 如圖所示,連接AC交BD于點(diǎn)O,連接MO. ∵四邊形ABCD是平行四邊形, ∴O是AC的中點(diǎn), 又M是PC的中點(diǎn),∴PA∥MO, 而AP?平面BDM,OM?平面BDM, ∴PA∥平面BMD, 又∵PA?平面PAHG,平面PAHG∩平面BMD=GH,∴PA∥GH. 又PA?平面PAD,GH?平面PAD, ∴GH∥平面PAD. 1.如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別為平面ABCD和平面A′B′C′D′的中心,則正方體的六個(gè)面中與EF平行的平面有( )
11、 A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 答案 D 解析 由直線與平面平行的判定定理知.EF與平面AB′,平面BC′,平面CD′,平面AD′均平行.故與EF平行的平面有4個(gè). 2.梯形ABCD中,AB∥CD,AB?平面α,CD?平面α,則直線CD與平面α內(nèi)的直線的位置關(guān)系只能是( ) A.平行 B.平行或異面 C.平行或相交 D.異面或相交 答案 B 解析 ∵?CD∥α, ∴直線CD與平面α內(nèi)的直線的位置關(guān)系是平行或異面. 3.如圖,在正方體ABCD—A1B1C1D1中,E是DD1的中點(diǎn),則A1C1與平面ACE的位置關(guān)系為________. 考點(diǎn) 直線與
12、平面平行的判定 題點(diǎn) 直線與平面平行的判定 答案 平行 解析 ∵A1C1∥AC,A1C1?平面ACE,AC?平面ACE,∴A1C1∥平面ACE. 4.如圖所示,直線a∥平面α,A?α,并且a和A位于平面α兩側(cè),點(diǎn)B,C∈a,AB,AC分別交平面α于點(diǎn)E,F(xiàn),若BC=4,CF=5,AF=3,則EF=______. 答案 解析 由于點(diǎn)A不在直線a上,則直線a和點(diǎn)A確定一個(gè)平面β,所以α∩β=EF. 因?yàn)閍∥平面α,a?平面β,所以EF∥a. 所以=. 所以EF===. 5.如圖,P是平行四邊形ABCD所在平面外一點(diǎn),E,F(xiàn)分別是AB,PD的中點(diǎn). 求證:AF∥平面PCE
13、. 證明 如圖,取PC的中點(diǎn)M,連接ME,MF,則FM∥CD且FM=CD. 又∵AE∥CD且AE=CD, ∴FM綊AE,即四邊形AFME是平行四邊形, ∴AF∥ME. 又∵AF?平面PCE,EM?平面PCE, ∴AF∥平面PCE. 1.求證兩直線平行有兩種常用的方法:一是應(yīng)用基本性質(zhì)4,證明時(shí)要充分應(yīng)用好平面幾何知識(shí),如平行線分線段成比例定理、三角形的中位線定理等.二是證明在同一平面內(nèi),這兩條直線無公共點(diǎn). 2.求證角相等也有兩種常用的方法:一是應(yīng)用等角定理,在證明的過程中常用到基本性質(zhì)4,注意兩角對(duì)應(yīng)邊方向的討論.二是應(yīng)用三角形全等或相似. 3.利用直線與平面平
14、行的判定定理來證明線面平行,關(guān)鍵是尋找面內(nèi)與已知直線平行的直線,常利用平行四邊形、三角形中位線、平行公理等. 4.利用線面平行的性質(zhì)定理解題的步驟: (1)確定(或?qū)ふ?一條直線平行于一個(gè)平面. (2)確定(或?qū)ふ?過這條直線且與這個(gè)平面相交的平面. (3)確定交線,由性質(zhì)定理得出結(jié)論. 一、選擇題 1.若直線a,b是異面直線,a?β,則b與平面β的位置關(guān)系是( ) A.平行 B.相交 C.b?β D.平行或相交 答案 D 解析 ∵a,b異面,且a?β,∴b?β,∴b與β平行或相交. 2.如圖,已知S為四邊形ABCD外一點(diǎn),G,H分別為SB,BD上的點(diǎn),若G
15、H∥平面SCD,則( ) A.GH∥SA B.GH∥SD C.GH∥SC D.以上均有可能 答案 B 解析 因?yàn)镚H∥平面SCD,GH?平面SBD,平面SBD∩平面SCD=SD,所以GH∥SD,顯然GH與SA,SC均不平行,故選B. 3.P為矩形ABCD所在平面外一點(diǎn),矩形對(duì)角線交點(diǎn)為O,M為PB的中點(diǎn),給出五個(gè)結(jié)論: ①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA;⑤OM∥平面PBC. 其中正確的個(gè)數(shù)為( ) A.1 B.2 C.3 D.4 答案 C 解析 由題意知,OM∥PD,則OM∥平面PCD,且OM∥平面PDA. 4
16、.已知直線l∥平面α,P∈α,那么過點(diǎn)P且平行于l的直線( ) A.只有一條,不在平面α內(nèi) B.只有一條,在平面α內(nèi) C.有兩條,不一定都在平面α內(nèi) D.有無數(shù)條,不一定都在平面α內(nèi) 答案 B 解析 如圖所示,∵l∥平面α,P∈α, ∴直線l與點(diǎn)P確定一個(gè)平面β,α∩β=m, ∴P∈m,∴l(xiāng)∥m且m是唯一的. 5.一條直線l上有相異三個(gè)點(diǎn)A、B、C到平面α的距離相等,那么直線l與平面α的位置關(guān)系是( ) A.l∥α B.l⊥α C.l與α相交但不垂直 D.l∥α或l?α 答案 D 解析 l∥α?xí)r,直線l上任意點(diǎn)到α的距離都相等.l?α?xí)r,直線l上所有的點(diǎn)到
17、α的距離都是0;l⊥α?xí)r,直線l上有兩個(gè)點(diǎn)到α的距離相等;l與α斜交時(shí),也只能有兩點(diǎn)到α的距離相等. 6.如圖,在三棱柱ABC—A1B1C1中,E是BC的中點(diǎn),D是AA1上的動(dòng)點(diǎn),且=m,若AE∥平面DB1C,則m的值為( ) A. B.1 C. D.2 答案 B 解析 如圖,取CB1的中點(diǎn)G,連接GE,DG,當(dāng)m=1時(shí),AD=GE=BB1且AD∥GE,∴四邊形ADGE為平行四邊形,則AE∥DG,可得AE∥平面DB1C. 7.如圖所示,四邊形EFGH為四面體ABCD的一個(gè)截面,若==,則與平面EFGH平行的直線有( ) A.0條 B.1條 C.2條 D.
18、3條 考點(diǎn) 直線與平面平行的判定 題點(diǎn) 直線與平面平行的判定 答案 C 解析 ∵=, ∴EF∥AB. 又EF?平面EFGH,AB?平面EFGH, ∴AB∥平面EFGH. 同理,由=, 可證CD∥平面EFGH. ∴與平面EFGH平行的直線有2條. 二、填空題 8.如圖所示,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),則BD1與過點(diǎn)A,E,C的平面的位置關(guān)系是________. 答案 平行 解析 如圖,連接BD,與AC交于點(diǎn)O,連接OE. ∵OE為△BDD1的中位線,∴BD1∥OE. 又BD1?平面AEC,OE?平面AEC, ∴BD1∥平面AE
19、C. 9.如圖,四邊形ABDC是梯形,AB∥CD,且AB∥平面α,M是AC的中點(diǎn),BD與平面α交于點(diǎn)N,AB=4,CD=6,則MN=________. 答案 5 解析 ∵AB∥平面α,AB?平面ABDC,平面ABDC∩平面α=MN,∴AB∥MN. 又M是AC的中點(diǎn),∴MN是梯形ABDC的中位線,故MN=(AB+CD)=5. 10.如圖所示,ABCD-A1B1C1D1是正方體,若過A,C,B1三點(diǎn)的平面與底面A1B1C1D1的交線為l,則l與AC的關(guān)系是________. 答案 平行 解析 ∵AC∥A1C1,A1C1?平面A1B1C1D1,AC?平面A1B1C1D1, ∴
20、AC∥平面A1B1C1D1. ∵平面ACB1∩平面A1B1C1D1=l, ∴AC∥l. 11.過三棱柱ABC-A1B1C1的任意兩條棱的中點(diǎn)作直線,其中與平面ABB1A1平行的直線共有________條. 答案 6 解析 如圖所示,與平面ABB1A1平行的直線有6條:D1E1,E1E,ED,DD1,D1E,DE1. 三、解答題 12.如圖,四邊形ABCD為正方形,△ABE為等腰直角三角形,AB=AE,P是線段CD的中點(diǎn),在直線AE上是否存在一點(diǎn)M,使得PM∥平面BCE.若存在,指出點(diǎn)M的位置,并證明你的結(jié)論. 解 如圖,存在點(diǎn)M,當(dāng)點(diǎn)M是線段AE的中點(diǎn)時(shí), PM∥平面
21、BCE. 取BE的中點(diǎn)N,連接CN,MN, 則MN綊AB綊PC, 所以四邊形MNCP為平行四邊形,所以PM∥CN. 因?yàn)镻M?平面BCE,CN?平面BCE, 所以PM∥平面BCE. 13.如圖,在三棱臺(tái)DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(diǎn). 求證:BD∥平面FGH. 證明 如圖,連接DG,CD,設(shè)CD∩GF=O,連接OH. 在三棱臺(tái)DEF-ABC中,AB=2DE,G為AC的中點(diǎn),可得DF綊GC, 所以四邊形DFCG為平行四邊形, 則O為CD的中點(diǎn), 又H為BC的中點(diǎn),所以O(shè)H∥BD. 又OH?平面FGH,BD?平面FGH, 所以B
22、D∥平面FGH. 四、探究與拓展 14.下列四個(gè)正方體圖形中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的是( ) A.①③ B.①④ C.②③ D.②④ 答案 B 解析 ①如圖(ⅰ),連接BC,則平面ABC∥平面MNP,所以AB∥平面MNP,所以①正確.②如圖(ⅱ),連接底面正方形對(duì)角線,并取其中點(diǎn)O,連接ON,則ON∥AB,所以AB與平面PMN相交,不平行,所以②不滿足題意.③AB與平面PMN相交,不平行,所以③不滿足題意.④因?yàn)锳B∥NP,所以AB∥平面MNP.所以④正確. 故答案為①④. 15.如圖,在直四棱
23、柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD.AB=4.BC=CD=2,AA1=2,E,E1,F(xiàn)分別是棱AD,AA1,AB的中點(diǎn). 證明:直線EE1∥平面FCC1. 證明 如圖,在直四棱柱ABCD-A1B1C1D1中, 取A1B1的中點(diǎn)F1,連接A1D,C1F1,CF1,F(xiàn)F1. ∵FF1∥BB1∥CC1, ∴F1F?平面FCC1, ∴平面FCC1即為平面C1CFF1. ∵AB=4,CD=2且AB∥CD,∴CD綊A1F1, ∴A1F1CD為平行四邊形, ∴CF1∥A1D. 又E,E1分別是棱AD,AA1的中點(diǎn), ∴EE1∥A1D,∴CF1∥EE1, 又EE1?平面FCC1,CF1?平面FCC1, ∴直線EE1∥平面FCC1.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功