(浙江專版)2022年高考數(shù)學大一輪復習 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學案 理
《(浙江專版)2022年高考數(shù)學大一輪復習 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學案 理》由會員分享,可在線閱讀,更多相關(guān)《(浙江專版)2022年高考數(shù)學大一輪復習 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學案 理(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(浙江專版)2022年高考數(shù)學大一輪復習 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)學案 理 最新考綱 1.以立體幾何的定義、公理和定理為出發(fā)點,認識和理解空間中線面平行的有關(guān)性質(zhì)與判定定理;2.能運用公理、定理和已獲得的結(jié)論證明一些有關(guān)空間圖形的平行關(guān)系的簡單命題. 知 識 梳 理 1.直線與平面平行 (1)直線與平面平行的定義 直線l與平面α沒有公共點,則稱直線l與平面α平行. (2)判定定理與性質(zhì)定理 文字語言 圖形表示 符號表示 判定定理 平面外一條直線與此平面內(nèi)的一條直線平行,則該直線平行于此平面 a?α,b?α,a∥b?a∥α
2、性質(zhì)定理 一條直線和一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行 a∥α,a?β,α∩β=b?a∥b 2.平面與平面平行 (1)平面與平面平行的定義 沒有公共點的兩個平面叫做平行平面. (2)判定定理與性質(zhì)定理 文字語言 圖形表示 符號表示 判定定理 一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行 a?α,b?α,a∩b=P,a∥β,b∥β?α∥β 性質(zhì)定理 兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面 α∥β,a?α?a∥β 如果兩個平行平面同時和第三個平面相交,那么它們的交線平
3、行 α∥β,α∩γ=a,β∩γ=b?a∥b 3.與垂直相關(guān)的平行的判定 (1)a⊥α,b⊥α?a∥b. (2)a⊥α,a⊥β?α∥β. [常用結(jié)論與微點提醒] 1.平行關(guān)系轉(zhuǎn)化 2.平面與平面平行的六個性質(zhì) (1)兩個平面平行,其中一個平面內(nèi)的任意一條直線平行于另一個平面. (2)夾在兩個平行平面間的平行線段長度相等. (3)經(jīng)過平面外一點有且只有一個平面與已知平面平行. (4)兩條直線被三個平行平面所截,截得的對應線段成比例. (5)如果兩個平面分別和第三個平面平行,那么這兩個平面互相平行. (6)如果一個平面內(nèi)有兩條相交直線分別平行于另一個平面內(nèi)的兩條直線
4、,那么這兩個平面平行. 診 斷 自 測 1.思考辨析(在括號內(nèi)打“√”或“×”) (1)若一條直線和平面內(nèi)一條直線平行,那么這條直線和這個平面平行.( ) (2)若直線a∥平面α,P∈α,則過點P且平行于直線a的直線有無數(shù)條.( ) (3)如果一個平面內(nèi)的兩條直線平行于另一個平面,那么這兩個平面平行.( ) (4)如果兩個平面平行,那么分別在這兩個平面內(nèi)的兩條直線平行或異面.( ) 解析 (1)若一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行或在平面內(nèi),故(1)錯誤. (2)若a∥α,P∈α,則過點P且平行于a的直線只有一條,故(2)錯誤. (3)如果一個
5、平面內(nèi)的兩條直線平行于另一個平面,則這兩個平面平行或相交,故(3)錯誤. 答案 (1)× (2)× (3)× (4)√ 2.下列命題中,正確的是( ) A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面 B.若直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行 C.若直線a,b和平面α滿足a∥α,b∥α,那么a∥b D.若直線a,b和平面α滿足a∥b,a∥α,b?α,則b∥α 解析 根據(jù)線面平行的判定與性質(zhì)定理知,選D. 答案 D 3.設(shè)α,β是兩個不同的平面,m是直線且m?α.“m∥β”是“α∥β”的( ) A.充分而不必要條件 B.必要而不充分條件
6、 C.充分必要條件 D.既不充分也不必要條件 解析 當m∥β時,可能α∥β,也可能α與β相交. 當α∥β時,由m?α可知,m∥β. ∴“m∥β”是“α∥β”的必要不充分條件. 答案 B 4.(必修2P56練習2改編)如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點,則BD1與平面AEC的位置關(guān)系為________. 解析 連接BD,設(shè)BD∩AC=O,連接EO,在△BDD1中,O為BD的中點,E為DD1的中點,所以EO為△BDD1的中位線,則BD1∥EO,而BD1?平面ACE,EO?平面ACE,所以BD1∥平面ACE. 答案 平行 5.用一個截面去截正三棱柱ABC
7、-A1B1C1,交A1C1,B1C1,BC,AC分別于E,F(xiàn),G,H四點,已知A1A>A1C1,則截面的形狀可以是________(把你認為可能的結(jié)果都填上). 解析 由題意知,當截面平行于側(cè)棱時所得截面為矩形,當截面與側(cè)棱不平行時,所得的截面是梯形. 答案 矩形或梯形 6.(2018·麗水月考)設(shè)α,β,γ為三個不同的平面,a,b為直線. (1)若α∥γ,β∥γ,則α與β的關(guān)系是________; (2)若a⊥α,b⊥β,a∥b,則α與β的關(guān)系是________. 解析 (1)由α∥γ,β∥γ?α∥β. (2)a⊥α,a∥b?b⊥α,又b⊥β,從而α∥β. 答案 (1)平
8、行 (2)平行 考點一 線面、面面平行的相關(guān)命題的真假判斷 【例1】 (一題多解)(2017·全國Ⅰ卷)如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直線AB與平面MNQ不平行的是( ) 解析 法一 對于選項B,如圖(1)所示,連接CD,因為AB∥CD,M,Q分別是所在棱的中點,所以MQ∥CD,所以AB∥MQ,又AB?平面MNQ,MQ?平面MNQ,所以AB∥平面MNQ.同理可證選項C,D中均有AB∥平面MNQ.因此A項不正確. 圖(1) 圖(2) 法二 對于選項A,其中O為BC的中點(如圖(
9、2)所示),連接OQ,則OQ∥AB,因為OQ與平面MNQ有交點,所以AB與平面MNQ有交點,即AB與平面MNQ不平行.A項不正確. 答案 A 規(guī)律方法 (1)判斷與平行關(guān)系相關(guān)命題的真假,必須熟悉線、面平行關(guān)系的各個定義、定理,無論是單項選擇還是含選擇項的填空題,都可以從中先選出最熟悉最容易判斷的選項先確定或排除,再逐步判斷其余選項. (2)①結(jié)合題意構(gòu)造或繪制圖形,結(jié)合圖形作出判斷. ②特別注意定理所要求的條件是否完備,圖形是否有特殊情況,通過舉反例否定結(jié)論或用反證法推斷命題是否正確. 【訓練1】 (2018·金華測試)設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列
10、四個命題: ①若m?α,n∥α,則m∥n; ②若α∥β,β∥γ,m⊥α,則m⊥γ; ③若α∩β=n,m∥n,m∥α,則m∥β; ④若m∥α,n∥β,m∥n,則α∥β. 其中是真命題的是________(填上正確命題的序號). 解析?、賛∥n或m,n異面,故①錯誤;易知②正確;③m∥β或m?β,故③錯誤;④α∥β或α與β相交,故④錯誤. 答案?、? 考點二 直線與平面平行的判定與性質(zhì)(多維探究) 命題角度1 直線與平面平行的判定 【例2-1】 (2016·全國Ⅲ卷)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一
11、點,AM=2MD,N為PC的中點. (1)證明:MN∥平面PAB; (2)求四面體N-BCM的體積. (1)證明 由已知得AM=AD=2. 如圖,取BP的中點T,連接AT,TN,由N為PC中點知TN∥BC,TN=BC=2. 又AD∥BC,故TN綉AM,所以四邊形AMNT為平行四邊形,于是MN∥AT. 因為AT?平面PAB,MN?平面PAB, 所以MN∥平面PAB. (2)解 因為PA⊥平面ABCD,N為PC的中點, 所以N到平面ABCD的距離為PA. 如圖,取BC的中點E,連接AE.由AB=AC=3得AE⊥BC,AE==. 由AM∥BC得M到BC的距離為,故S△B
12、CM=×4×=2.所以四面體N-BCM的體積VN-BCM=×S△BCM×=. 命題角度2 直線與平面平行性質(zhì)定理的應用 【例2-2】 如圖,四棱錐P-ABCD的底面是邊長為8的正方形,四條側(cè)棱長均為2.點G,E,F(xiàn),H分別是棱PB,AB,CD,PC上共面的四點,平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)證明:GH∥EF; (2)若EB=2,求四邊形GEFH的面積. (1)證明 因為BC∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH, 所以GH∥BC.同理可證EF∥BC,因此GH∥EF. (2)解 如圖,連接AC,BD交于點O,BD交EF于
13、點K,連接OP,GK.因為PA=PC,O是AC的中點,所以PO⊥AC, 同理可得PO⊥BD. 又BD∩AC=O,且AC,BD都在底面ABCD內(nèi),所以PO⊥底面ABCD.又因為平面GEFH⊥平面ABCD, 且PO?平面GEFH,所以PO∥平面GEFH. 因為平面PBD∩平面GEFH=GK, PO?平面PBD. 所以PO∥GK,且GK⊥底面ABCD, 又EF?平面ABCD, 從而GK⊥EF. 所以GK是梯形GEFH的高. 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4, 從而KB=DB=OB,即K為OB的中點. 再由PO∥GK得GK=PO,即G是PB的中點,且GH=B
14、C=4.由已知可得OB=4,PO===6,所以GK=3. 故四邊形GEFH的面積S=·GK=×3=18. 規(guī)律方法 (1)判斷或證明線面平行的常用方法有: ①利用反證法(線面平行的定義); ②利用線面平行的判定定理(a?α,b?α,a∥b?a∥α); ③利用面面平行的性質(zhì)定理(α∥β,a?α?a∥β); ④利用面面平行的性質(zhì)(α∥β,a?β,a∥α?a∥β). (2)利用判定定理判定線面平行,關(guān)鍵是找平面內(nèi)與已知直線平行的直線.常利用三角形的中位線、平行四邊形的對邊或過已知直線作一平面找其交線. 【訓練2】 在四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為
15、線段AD,PC,CD的中點,AC與BE交于O點,G是線段OF上一點. (1)求證:AP∥平面BEF; (2)求證:GH∥平面PAD. 證明 (1)連接EC, ∵AD∥BC,BC=AD, E為AD的中點,∴BC綉AE, ∴四邊形ABCE是平行四邊形, ∴O為AC的中點, 又∵F是PC的中點,∴FO∥AP, 又FO?平面BEF,AP?平面BEF,∴AP∥平面BEF. (2)連接FH,OH,∵F,H分別是PC,CD的中點, ∴FH∥PD,又PD?平面PAD,F(xiàn)H?平面PAD, ∴FH∥平面PAD. 又∵O是BE的中點,H是CD的中點, ∴OH∥AD,又∵AD?平面
16、PAD,OH?平面PAD, ∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH?平面OHF,∴GH∥平面PAD. 考點三 面面平行的判定與性質(zhì)(變式遷移) 【例3】 (經(jīng)典母題)如圖所示,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證: (1)B,C,H,G四點共面; (2)平面EFA1∥平面BCHG. 證明 (1)∵G,H分別是A1B1,A1C1的中點, ∴GH是△A1B1C1的中位線,則GH∥B1C1. 又∵B1C1∥BC, ∴GH∥BC, ∴B,C,H,G四點共面. (2)∵E,F(xiàn)分別
17、為AB,AC的中點,∴EF∥BC, ∵EF?平面BCHG,BC?平面BCHG, ∴EF∥平面BCHG. 又G,E分別為A1B1,AB的中點,A1B1綉AB, ∴A1G綉EB, ∴四邊形A1EBG是平行四邊形,∴A1E∥GB. ∵A1E?平面BCHG,GB?平面BCHG, ∴A1E∥平面BCHG.又∵A1E∩EF=E, ∴平面EFA1∥平面BCHG. 【變式遷移1】 如圖,在本例條件下,若點D為BC1的中點,求證:HD∥平面A1B1BA. 證明 如圖所示,連接A1B. ∵D為BC1的中點,H為A1C1的中點,∴HD∥A1B, 又HD?平面A1B1BA, A1B?
18、平面A1B1BA, ∴HD∥平面A1B1BA. 【變式遷移2】 在本例中,若將條件“E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點”變?yōu)椤包cD,D1分別是AC,A1C1上的點,且平面BC1D∥平面AB1D1”,試求的值. 解 連接A1B交AB1于O,連接OD1. 由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,所以BC1∥D1O,則==1. 又由題設(shè)=, ∴=1,即=1. 規(guī)律方法 (1)判定面面平行的主要方法 ①利用面面平行的判定定理. ②線面垂直的性質(zhì)(垂直于同一直線的兩平面平行). (2)面
19、面平行的性質(zhì)定理 ①兩平面平行,則一個平面內(nèi)的直線平行于另一平面. ②若一平面與兩平行平面相交,則交線平行. 提醒 利用面面平行的判定定理證明兩平面平行時需要說明是一個平面內(nèi)的兩條相交直線與另一個平面平行. 【訓練3】 (2016·山東卷)在如圖所示的幾何體中,D是AC的中點,EF∥DB. (1)已知AB=BC,AE=EC.求證:AC⊥FB; (2)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC. 證明 (1)因為EF∥DB,所以EF與DB確定平面BDEF, 圖① 如圖①,連接DE.因為AE=EC,D為AC的中點, 所以DE⊥AC.同理可得BD⊥AC.
20、又BD∩DE=D, 所以AC⊥平面BDEF. 因為FB?平面BDEF, 所以AC⊥FB. (2)如圖②,設(shè)FC的中點為I,連接GI,HI. 圖② 在△CEF中,因為G是CE的中點, 所以GI∥EF.又EF∥DB, 所以GI∥DB. 在△CFB中,因為H是FB的中點,所以HI∥BC. 又HI∩GI=I, 所以平面GHI∥平面ABC, 因為GH?平面GHI, 所以GH∥平面ABC. 基礎(chǔ)鞏固題組 一、選擇題 1.設(shè)m,n是不同的直線,α,β是不同的平面,且m,n?α,則“α∥β”是“m∥β且n∥β”的( ) A.充分不必要條件 B.必要不充分條件
21、C.充要條件 D.既不充分也不必要條件 解析 若m,n?α,α∥β,則m∥β且n∥β;反之若m,n?α,m∥β且n∥β,則α與β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要條件. 答案 A 2.有下列命題: ①若直線l平行于平面α內(nèi)的無數(shù)條直線,則直線l∥α; ②若直線a在平面α外,則a∥α; ③若直線a∥b,b∥α,則a∥α; ④若直線a∥b,b∥α,則a平行于平面α內(nèi)的無數(shù)條直線. 其中真命題的個數(shù)是( ) A.1 B.2 C.3 D.4 解析 命題①l可以在平面α內(nèi),不正確;命題②直線a與平面α可以是相交關(guān)系,不正確;命題③a可以在平面α內(nèi)
22、,不正確;命題④正確. 答案 A 3.如圖所示的三棱柱ABC-A1B1C1中,過A1B1的平面與平面ABC交于DE,則DE與AB的位置關(guān)系是( ) A.異面 B.平行 C.相交 D.以上均有可能 解析 在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB?平面ABC,A1B1?平面ABC, ∴A1B1∥平面ABC,∵過A1B1的平面與平面ABC交于DE.∴DE∥A1B1,∴DE∥AB. 答案 B 4.下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的序號是( ) A.①③ B.①④
23、C.②③ D.②④ 解析 ①中,易知NP∥AA′, MN∥A′B, ∴平面MNP∥平面AA′B, 可得出AB∥平面MNP(如圖). ④中,NP∥AB,能得出AB∥平面MNP.在②③中不能判定AB∥平面MNP. 答案 B 5.(2018·嘉興測試)已知m,n表示兩條不同直線,α表示平面,下列說法正確的是( ) A.若m∥α,n∥α,則m∥n B.若m⊥α,n?α,則m⊥n C.若m⊥α,m⊥n,則n∥α D.若m∥α,m⊥n,則n⊥α 解析 若m∥α,n∥α,則m,n平行、相交或異面,A錯;若m⊥α,n?α,則m⊥n,因為直線與平面垂直時,它垂直于平面內(nèi)任一直線
24、,B正確;若m⊥α,m⊥n,則n∥α或n?α,C錯;若m∥α,m⊥n,則n與α可能相交,可能平行,也可能n?α,D錯. 答案 B 6.(2018·湖州調(diào)研)已知m,n是兩條不同的直線,α,β是兩個不同的平面( ) A.若m∥α,m∥β,則α∥β B.若m⊥α,m∥β,則α∥β C.若m⊥α,n∥α,則m∥n D.若m⊥α,n⊥α,則m∥n 解析 若m∥α,m∥β,則α,β可能平行或相交,A錯誤;若m⊥α,m∥β,則α⊥β,B錯誤;若m⊥α,n⊥α,則m⊥n,C錯誤; 若m⊥α,n⊥α,則m∥n,D正確,故選D. 答案 D 二、填空題 7.(2017·臺州月考)在四
25、面體A-BCD中,M,N分別是△ACD,△BCD的重心,則MN與平面ABD的位置關(guān)系是________;與平面ABC的位置關(guān)系是________. 解析 如圖,取CD的中點E. 連接AE,BE,由于M,N分別是△ACD,△BCD的重心,所以AE,BE分別過M,N,則EM∶MA=1∶2,EN∶BN=1∶2, 所以MN∥AB.因為AB?平面ABD,MN?平面ABD,AB?平面ABC,MN?平面ABC,所以MN∥平面ABD, MN∥平面ABC. 答案 平行 平行 8.(2017·寧波調(diào)研)如圖,四棱錐P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面AB
26、CD,E為PC的中點,則BE與平面PAD的位置關(guān)系為________. 解析 取PD的中點F,連接EF,AF, 在△PCD中,EF綉CD. 又∵AB∥CD且CD=2AB, ∴EF綉AB, ∴四邊形ABEF是平行四邊形, ∴EB∥AF. 又∵EB?平面PAD,AF?平面PAD, ∴BE∥平面PAD. 答案 平行 9.設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題: ①若m?α,n∥α,則m∥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;③若α∩β=n,m∥n,則m∥α,且m∥β;④若α⊥γ,β⊥γ,則α∥β. 其中真命題的個數(shù)為________
27、__. 解析 若m?α,n∥α,則m,n可能平行或異面,①錯誤;若α∥β,β∥γ,則α∥γ,又m⊥α,則m⊥γ,②正確;若α∩β=n,m∥n,則m∥α或m∥β或m?α或m?β,③錯誤;若α⊥γ,β⊥γ,則α,β可能平行或相交,④錯誤,則真命題個數(shù)為1. 答案 1 10.如圖所示,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D,DC的中點,N是BC的中點,點M在四邊形EFGH及其內(nèi)部運動,則M只需滿足條件________時,就有MN∥平面B1BDD1.(注:請?zhí)钌夏阏J為正確的一個條件即可,不必考慮全部可能情況) 解析 連接HN,F(xiàn)H,F(xiàn)N,則F
28、H∥DD1,HN∥BD, ∴平面FHN∥平面B1BDD1,只需M∈FH,則MN?平面FHN,∴MN∥平面B1BDD1. 答案 點M在線段FH上(或點M與點H重合) 三、解答題 11.一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示. (1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由); (2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論. 解 (1)點F,G,H的位置如圖所示. (2)平面BEG∥平面ACH,證明如下:因為ABCD-EFGH為正方體, 所以BC∥FG,BC=FG, 又FG∥EH,F(xiàn)G=EH,所以BC∥EH,BC=EH,于
29、是四邊形BCHE為平行四邊形,所以BE∥CH.又CH?平面ACH,BE?平面ACH, 所以BE∥平面ACH.同理BG∥平面ACH. 又BE∩BG=B,所以平面BEG∥平面ACH. 12.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點. (1)證明:PB∥平面AEC; (2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求A到平面PBC的距離. (1)證明 設(shè)BD與AC的交點為O,連接EO. 因為ABCD為矩形,所以O(shè)為BD的中點.又E為PD的中點,所以EO∥PB.又因為EO?平面AEC,PB?平面AEC,所以PB∥平面AEC. (2
30、)解 V=PA·AB·AD=AB. 由V=,可得AB=.作AH⊥PB交PB于H. 由題設(shè)知AB⊥BC,PA⊥BC,且PA∩AB=A,所以BC⊥平面PAB,又AH?平面PAB,所以BC⊥AH,又PB∩BC=B,故AH⊥平面PBC.在Rt△PAB中,由勾股定理可得PB=,所以AH==.所以A到平面PBC的距離為. 能力提升題組 13.給出下列關(guān)于互不相同的直線l,m,n和平面α,β,γ的三個命題:①若l與m為異面直線,l?α,m?β,則α∥β; ②若α∥β,l?α,m?β,則l∥m; ③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n. 其中真命題的個數(shù)為( ) A.3
31、 B.2 C.1 D.0 解析?、僦挟敠僚cβ不平行時,也可能存在符合題意的l,m;②中l(wèi)與m也可能異面;③中?l∥n,同理,l∥m,則m∥n,正確. 答案 C 14.在四面體ABCD中,截面PQMN是正方形,則在下列結(jié)論中,錯誤的是( ) A.AC⊥BD B.AC∥截面PQMN C.AC=BD D.異面直線PM與BD所成的角為45° 解析 因為截面PQMN是正方形,所以MN∥QP,又PQ?平面ABC,MN?平面ABC,則MN∥平面ABC,由線面平行的性質(zhì)知MN∥AC,又MN?平面PQMN,AC?平面PQMN,則AC∥截面PQMN,同理可得MQ∥BD,又MN⊥QM,
32、則AC⊥BD,故A,B正確.又因為BD∥MQ,所以異面直線PM與BD所成的角等于PM與QM所成的角,即為45°,故D正確. 答案 C 15.(2018·紹興一中適應性檢測)如圖所示,棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,設(shè)D是A1C1上的點且A1B∥平面B1CD,則A1D∶DC1的值為________. 解析 設(shè)BC1∩B1C=O,連接OD. ∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD, ∴A1B∥OD,∵四邊形BCC1B1是菱形,∴O為BC1的中點,∴D為A1C1的中點,則A1D∶DC1=1. 答案 1 16.如圖,在直三棱柱ABC-A1B1
33、C1中,已知AC⊥BC,BC=CC1.設(shè)AB1的中點為D,B1C∩BC1=E.求證: (1)DE∥平面AA1C1C; (2)BC1⊥AB1. 證明 (1)由題意知,E為B1C的中點,又D為AB1的中點,因此DE∥AC. 又因為DE?平面AA1C1C,AC?平面AA1C1C, 所以DE∥平面AA1C1C. (2)因為棱柱ABC-A1B1C1是直三棱柱, 所以CC1⊥平面ABC. 因為AC?平面ABC,所以AC⊥CC1. 又因為AC⊥BC,CC1?平面BCC1B1, BC?平面BCC1B1,BC∩CC1=C, 所以AC⊥平面BCC1B1. 又因為BC1?平面BCC1B1
34、, 所以BC1⊥AC. 因為BC=CC1, 所以矩形BCC1B1是正方形, 因此BC1⊥B1C. 因為AC,B1C?平面B1AC,AC∩B1C=C, 所以BC1⊥平面B1AC. 又因為AB1?平面B1AC, 所以BC1⊥AB1. 17.(2018·杭州七校聯(lián)考)如圖,在四棱臺ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°. (1)證明:AA1⊥BD; (2)證明:CC1∥平面A1BD. 證明 (1)因為D1D⊥平面ABCD,且BD?平面ABCD,所以D1D⊥BD. 又AB=2AD,∠BAD=60°,在△ABD中,由余弦定理,得BD=AD, 所以AD2+BD2=AB2,即AD⊥BD. 又AD∩D1D=D,所以BD⊥平面ADD1A1. 又AA1?平面ADD1A1,所以AA1⊥BD. (2)如圖,連接AC,A1C1. 設(shè)AC∩BD=E,連接EA1. 因為四邊形ABCD為平行四邊形, 所以EC=AC. 由棱臺定義及AB=2AD=2A1B1知,A1C1∥EC且A1C1=EC, 所以四邊形A1ECC1為平行四邊形, 因此CC1∥EA1. 又EA1?平面A1BD,CC1?平面A1BD, 所以CC1∥平面A1BD.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工重大危險源安全管理制度
- 安全培訓資料:典型建筑火災的防治基本原則與救援技術(shù)
- 企業(yè)雙重預防體系應知應會知識問答
- 8 各種煤礦安全考試試題
- 9 危險化學品經(jīng)營單位安全生產(chǎn)管理人員模擬考試題庫試卷附答案
- 加壓過濾機司機技術(shù)操作規(guī)程
- 樹脂砂混砂工藝知識總結(jié)
- XXXXX現(xiàn)場安全應急處置預案
- 某公司消防安全檢查制度總結(jié)
- 1 煤礦安全檢查工(中級)職業(yè)技能理論知識考核試題含答案
- 4.燃氣安全生產(chǎn)企業(yè)主要負責人模擬考試題庫試卷含答案
- 工段(班組)級安全檢查表
- D 氯化工藝作業(yè)模擬考試題庫試卷含答案-4
- 建筑起重司索信號工安全操作要點
- 實驗室計量常見的30個問問答題含解析