2022年高考數(shù)學第二輪復習 專題二 函數(shù)與導數(shù)第3講 導數(shù)及其應用 文
《2022年高考數(shù)學第二輪復習 專題二 函數(shù)與導數(shù)第3講 導數(shù)及其應用 文》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學第二輪復習 專題二 函數(shù)與導數(shù)第3講 導數(shù)及其應用 文(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學第二輪復習 專題二 函數(shù)與導數(shù)第3講 導數(shù)及其應用 文 真題試做 1.(xx·遼寧高考,文8)函數(shù)y=x2-ln x的單調遞減區(qū)間為( ). A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞) 2.(xx·浙江高考,文21)已知a∈R,函數(shù)f(x)=4x3-2ax+a. (1)求f(x)的單調區(qū)間; (2)證明:當0≤x≤1時,f(x)+|2-a|>0. 3.(xx·天津高考,文20)已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0. (1)求函數(shù)f(x)的單調區(qū)間; (2)若函數(shù)f(x)在區(qū)間(-2
2、,0)內恰有兩個零點,求a的取值范圍; (3)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值. 考向分析 從近三年高考來看,該部分高考命題有以下特點: 從內容上看,考查導數(shù)主要有三個層次:(1)導數(shù)的概念、求導公式與法則、導數(shù)的幾何意義;(2)導數(shù)的簡單應用,包括求函數(shù)極值、求函數(shù)的單調區(qū)間、證明函數(shù)的單調性等;(3)導數(shù)的綜合考查,包括導數(shù)的應用題以及導數(shù)與函數(shù)、不等式等的綜合題. 從形式上看,考查導數(shù)的試題有選擇題、填空題、解答題,有時三種題型會同時出現(xiàn). 熱
3、點例析 熱點一 導數(shù)的幾何意義 【例1】設函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3. (1)求y=f(x)的解析式; (2)證明曲線y=f(x)上任一點處的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值. 規(guī)律方法 1.導數(shù)的幾何意義: 函數(shù)y=f(x)在x0處的導數(shù)f′(x0)的幾何意義是:曲線y=f(x)在點(x0,f(x0))處的切線的斜率(瞬時速度就是位移函數(shù)s(t)對時間t的導數(shù)). 2.求曲線切線方程的步驟: (1)求出函數(shù)y=f(x)在點x=x0的導數(shù)f′(x0),即曲線y=f(x)在點P(x0
4、,f(x0))處切線的斜率; (2)已知或求得切點坐標P(x0,f(x0)),由點斜式得切線方程為y-y0=f′(x0)(x-x0). 特別提醒:①當曲線y=f(x)在點P(x0,f(x0))處的切線平行于y軸(此時導數(shù)不存在)時,由切線定義可知,切線方程為x=x0;②當切點坐標未知時,應首先設出切點坐標,再求解. 變式訓練1 (1)設曲線y=ax2在點(1,a)處的切線與直線2x-y-6=0平行,則a=__________; (2)設f(x)=xln x+1,若f′(x0)=2,則f(x)在點(x0,y0)處的切線方程為__________. 熱點二 利用導數(shù)研究函數(shù)的單調性 【
5、例2】已知函數(shù)f(x)=x2+aln x. (1)當a=-2時,求函數(shù)f(x)的單調遞減區(qū)間; (2)若函數(shù)g(x)=f(x)+在[1,+∞)上單調,求實數(shù)a的取值范圍. 規(guī)律方法 利用導數(shù)研究函數(shù)單調性的一般步驟: (1)確定函數(shù)的定義域; (2)求導函數(shù)f′(x); (3)①若求單調區(qū)間(或證明單調性),只需在函數(shù)f(x)的定義域內解(或證明)不等式f′(x)>0或f′(x)<0.②若已知函數(shù)的單調性求參數(shù),只需轉化為不等式f′(x)≥0或f′(x)≤0在單調區(qū)間內恒成立問題求解.解題過程中要注意分類討論;函數(shù)單調性問題以及一些相關的逆向問題,都離不開分類討論思想. 變式訓練
6、2 已知函數(shù)f(x)=x-+a(2-ln x),a>0.討論f(x)的單調性. 熱點三 利用導數(shù)研究函數(shù)極值和最值問題 【例3】已知函數(shù)f(x)=x3-ax2-3x, (1)若f(x)在區(qū)間[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍; (2)若x=-是f(x)的極值點,求f(x)在[1,a]上的最大值; (3)在(2)的條件下,是否存在實數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個交點?若存在,請求出實數(shù)b的取值范圍;若不存在,試說明理由. 規(guī)律方法 利用導數(shù)研究函數(shù)極值的一般步驟是:(1)確定函數(shù)的定義域;(2)求函數(shù)f(x)的導數(shù)f′(x);(3)①若求極值,
7、則先求出方程f′(x)=0的根,再檢驗f′(x)在方程根左右邊f(xié)′(x)的符號,求出極值.當根中有參數(shù)時要注意分類討論根是否在定義域內.②若已知極值大小或存在情況,則轉化為已知方程f′(x)=0根的大小或存在情況,從而求解. 變式訓練3 設a∈R,函數(shù)f(x)=ax3-3x2. (1)若x=2是函數(shù)y=f(x)的極值點,求a的值; (2)若函數(shù)g(x)=f(x)+f′(x),x∈[0,2]在x=0處取得最大值,求a的取值范圍. 思想滲透 轉化與化歸思想的含義 轉化與化歸思想方法,就是在研究和解決有關數(shù)學問題時,采用某種手段將問題通過變換使之轉化,進而使問題得到解決的一種數(shù)學方法.一
8、般是將復雜的問題通過變換轉化為簡單的問題,將難解的問題通過變換轉化為容易求解的問題,將未解決的問題通過變換轉化為已解決的問題. 轉化與化歸常用的方法是等價轉化法:把原問題轉化為一個易于解決的等價問題,以達到化歸的目的. 已知函數(shù)f(x)=x(ln x+m),g(x)=x3+x. (1)當m=-2時,求f(x)的單調區(qū)間; (2)若m=時,不等式g(x)≥f(x)恒成立,求實數(shù)a的取值范圍. 解:(1)當m=-2時,f(x)=x(ln x-2)=xln x-2x,定義域為(0,+∞),且f′(x)=ln x-1. 由f′(x)>0,得ln x-1>0,所以x>e. 由f′(x)<0
9、,得ln x-1<0,所以0<x<e. 故f(x)的單調遞增區(qū)間是(e,+∞),遞減區(qū)間是(0,e). (2)當m=時,不等式g(x)≥f(x), 即x3+x≥x恒成立. 由于x>0,所以x2+1≥ln x+, 即x2≥ln x+,所以a≥ . 令h(x)= ,則h′(x)=, 由h′(x)=0得x=1. 且當0<x<1時,h′(x)>0; 當x>1時,h′(x)<0, 即h(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減, 所以h(x)在x=1處取得極大值h(1)=, 也就是函數(shù)h(x)在定義域上的最大值. 因此要使a≥恒成立,需有a≥,此即為a的取值范圍.
10、 1.已知函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=3xf′(1)+x2,則f′(1)=( ). A.-1 B.-2 C.1 D.2 2.(xx·浙江名?!秳?chuàng)新》沖刺卷,文10)已知f(x)是R上的周期為2的偶函數(shù),當0<x<1時,f(x)=x2+2x-3ln x,設a=f,b=f,c=f,則( ). A.a<b<c B.c<a<b C.a<c<b D.b<c<a 3.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當x<0時,不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=logπ3f(logπ3
11、),c=log3f,則a,b,c間的大小關系是( ). A.a>b>c B.c>b>a C.c>a>b D.a>c>b 4.函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為( ). A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) 5.三次函數(shù)f(x),當x=1時有極大值4;當x=3時有極小值0,且函數(shù)圖象過原點,則f(x)=__________. 6.已知函數(shù)f(x)=-x3+3x2+9x+a(a為常數(shù))在區(qū)間[-2,2]上有最大值20,那么此
12、函數(shù)在區(qū)間[-2,2]上的最小值為__________. 7.已知函數(shù)f(x)=ax+ln x(a∈R). (1)若a=1,求曲線y=f(x)在x=處切線的斜率; (2)求函數(shù)f(x)的單調區(qū)間; (3)設g(x)=2x,若對任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求實數(shù)a的取值范圍. 8.(xx·浙江寧波十校聯(lián)考,文21)設函數(shù)f(x)=a2ln x-4x,g(x)=bx2,(a≠0,b≠0,a,b∈R). (1)當b=時,函數(shù)h(x)=f(x)+g(x)在x=1處有極小值,求函數(shù)h(x)的單調遞增區(qū)間; (2)若函數(shù)f(x)和g(x)有相同的極
13、大值,且函數(shù)p(x)=f(x)+在區(qū)間[1,e2]上的最大值為-8e,求實數(shù)b的值.(其中e是自然對數(shù)的底數(shù)) 參考答案 命題調研·明晰考向 真題試做 1.B 解析:對函數(shù)y=x2-ln x求導, 得y′=x-=(x>0), 令解得x∈(0,1].因此函數(shù)y=x2-ln x的單調遞減區(qū)間為(0,1].故選B. 2.(1)解:由題意得f′(x)=12x2-2a. 當a≤0時,f′(x)≥0恒成立,此時f(x)的單調遞增區(qū)間為(-∞,+∞). 當a>0時,f′(x)=12, 此時函數(shù)f(x)的單調遞增區(qū)間為 和. 單調遞減區(qū)間為. (2)證明:由于0≤x≤1,故當a≤2時
14、,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2. 當a>2時,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2. 設g(x)=2x3-2x+1,0≤x≤1, 則g′(x)=6x2-2=6, 于是 x 0 1 g′(x) - 0 + g(x) 1 減 極小值 增 1 所以,g(x)min=g=1->0. 所以當0≤x≤1時,2x3-2x+1>0. 故f(x)+|a-2|≥4x3-4x+2>0. 3.解:(1)f′(x)=x2+(1-a)x-a=(x+1)(x-a). 由f′(
15、x)=0,得x1=-1,x2=a>0. 當x變化時,f′(x),f(x)的變化情況如下表: x (-∞,-1) -1 (-1,a) a (a,+∞) f′(x) + 0 - 0 + f(x) 極大值 極小值 故函數(shù)f(x)的單調遞增區(qū)間是(-∞,-1),(a,+∞);單調遞減區(qū)間是(-1,a). (2)由(1)知f(x)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,從而函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點當且僅當解得0<a<. 所以,a的取值范圍是. (3)a=1時,f(x)=x3-x-1. 由(1)知f(x)在[-
16、3,-1]上單調遞增,在[-1,1]上單調遞減,在[1,2]上單調遞增. ①當t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上單調遞增,在[-1,t+3]上單調遞減. 因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)=-,而最小值m(t)為f(t)與f(t+3)中的較小者. 由f(t+3)-f(t)=3(t+1)(t+2)知,當t∈[-3,-2]時,f(t)≤f(t+3), 故m(t)=f(t),所以g(t)=f(-1)-f(t). 而f(t)在[-3,-2]上單調遞增,因此f(t)≤f(-2)=-, 所以g(t)在[-3,-2]
17、上的最小值為g(-2)=--=. ②當t∈[-2,-1]時,t+3∈[1,2],且-1,1∈[t,t+3]. 下面比較f(-1),f(1),f(t),f(t+3)的大?。? 由f(x)在[-2,-1],[1,2]上單調遞增,有 f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2). 又f(1)=f(-2)=-,f(-1)=f(2)=-,從而M(t)=f(-1)=-,m(t)=f(1)=-. 所以g(t)=M(t)-m(t)=. 綜上,函數(shù)g(t)在區(qū)間[-3,-1]上的最小值為. 精要例析·聚焦熱點 熱點例析 【例1】(1)解:f′(x)=a-, 于是解得或
18、 由a,b∈Z,故f(x)=x+. (2)證明:在曲線上任取一點. 由f′(x0)=1-知,過此點的切線方程為y-=(x-x0). 令x=1得y=,切線與直線x=1的交點為. 令y=x,得y=2x0-1, 切線與直線y=x的交點為(2x0-1,2x0-1). 直線x=1與直線y=x的交點為(1,1). 從而所圍三角形的面積為·2x0-1-1 =2x0-2=2. ∴所圍三角形的面積為定值2. 【變式訓練1】(1)1 解析:∵y=ax2,∴y′=2ax,∴y′|x=1=2a. 又y=ax2在點(1,a)處的切線與直線2x-y-6=0平行, ∴2a=2,a=1. (2)2x
19、-y-e+1=0 解析:因為f(x)=xln x+1, 所以f′(x)=ln x+x·=ln x+1. 因為f′(x0)=2,所以ln x0+1=2, 解得x0=e,y0=e+1. 由點斜式得,f(x)在點(e,e+1)處的切線方程為y-(e+1)=2(x-e),即2x-y-e+1=0. 【例2】解:(1)由題意知,函數(shù)的定義域為(0,+∞), 當a=-2時,f′(x)=2x-=, 故f(x)的單調遞減區(qū)間是(0,1). (2)由題意得g′(x)=2x+-,函數(shù)g(x)在[1,+∞)上是單調函數(shù). ①若g(x)為[1,+∞)上的單調增函數(shù),則g′(x)≥0在[1,+∞)上恒成
20、立, 即a≥-2x2在[1,+∞)上恒成立,設φ(x)=-2x2, ∵φ(x)在[1,+∞)上單調遞減, ∴φ(x)max=φ(1)=0,∴a≥0. ②若g(x)為[1,+∞)上的單調減函數(shù), 則g′(x)≤0在[1,+∞)上恒成立,不可能. ∴實數(shù)a的取值范圍為a≥0. 【變式訓練2】解:f(x)的定義域是(0,+∞),f′(x)=1+-=. 設g(x)=x2-ax+2,二次方程g(x)=0的判別式Δ=a2-8. ①當Δ<0即0<a<2時,對一切x>0都有f′(x)>0. 此時f(x)是(0,+∞)上的單調遞增函數(shù). ②當Δ=0即a=2時,僅對x=有f′(x)=0,對其
21、余的x>0都有f′(x)>0. 此時f(x)也是(0,+∞)上的單調遞增函數(shù). ③當Δ>0即a>2時,方程g(x)=0有兩個不同的實根 x1=,x2=,0<x1<x2. x (0,x1) x1 (x1,x2) x2 (x2,+∞) f′(x) + 0 - 0 + f(x) 單調遞增 極大值 單調遞減 極小值 單調遞增 此時f(x)在上單調遞增,在上單調遞減,在上單調遞增. 【例3】解:(1)f′(x)=3x2-2ax-3. ∵f(x)在[1,+∞)上是增函數(shù), ∴f′(x)在[1,+∞)上恒有f′(x)≥0, 即3x2-2ax-3≥0在[1,
22、+∞)上恒成立, 則必有≤1且f′(1)=-2a≥0. ∴a≤0. (2)依題意,f′=0,即+a-3=0. ∴a=4,∴f(x)=x3-4x2-3x. 令f′(x)=3x2-8x-3=0,得x1=-,x2=3. 則當x變化時,f′(x)與f(x)變化情況如下表: x 1 (1,3) 3 (3,4) 4 f′(x) - 0 + f(x) -6 -18 -12 ∴f(x)在[1,4]上的最大值是f(1)=-6. (3)函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個交點,即方程x3-4x2-3x=bx恰有3個不等實根. ∴x3-4
23、x2-3x-bx=0, ∴x=0是其中一個根, ∴方程x2-4x-3-b=0有兩個非零不等實根. ∴ ∴b>-7且b≠-3. ∴存在滿足條件的b值,b的取值范圍是b>-7且b≠-3. 【變式訓練3】解:(1)f′(x)=3ax2-6x=3x(ax-2). 因為x=2是函數(shù)y=f(x)的極值點, 所以f′(2)=0,即6(2a-2)=0,因此a=1. 經驗證,當a=1時,x=2是函數(shù)y=f(x)的極值點. (2)由題設,g(x)=ax3-3x2+3ax2-6x=ax2(x+3)-3x(x+2). 當g(x)在區(qū)間[0,2]上的最大值為g(0)時,g(0)≥g(2), 即0
24、≥20a-24,得a≤. 反之,當a≤時,對任意x∈[0,2], g(x)≤x2(x+3)-3x(x+2)=(2x2+x-10)=(2x+5)(x-2)≤0, 而g(0)=0,故g(x)在區(qū)間[0,2]上的最大值為g(0). 綜上,a的取值范圍為. 創(chuàng)新模擬·預測演練 1.A 解析:f′(x)=3f′(1)+2x,令x=1,得f′(1)=3f′(1)+2, ∴f′(1)=-1.故選A. 2.D 解析:當0<x<1時,f′(x)=x+2-=<0,則函數(shù)f(x)在區(qū)間(0,1)上為減函數(shù). 又b=f=f=f=f, c=f=f,則有b<c<a. 3.C 解析:設g(x)=xf(
25、x),則g′(x)=f(x)+xf′(x)<0, ∴當x<0時,g(x)=xf(x)為減函數(shù). 又g(x)為偶函數(shù),∴當x>0時,g(x)為增函數(shù). ∵1<30.3<2,0<logπ3<1,log3=-2, ∴g(-2)>g(30.3)>g(logπ3), 即c>a>b,故選C. 4.B 解析:設h(x)=f(x)-(2x+4),則h′(x)=f′(x)-2>0, 故h(x)在R上單調遞增,又h(-1)=f(-1)-2=0, 所以當x>-1時,h(x)>0,即f(x)>2x+4. 5.x3-6x2+9x 解析:設f(x)=ax3+bx2+cx+d(a≠0), 則f′(x)=
26、3ax2+2bx+c. 由題意,有即 解得 故f(x)=x3-6x2+9x. 6.-7 解析:f′(x)=-3x2+6x+9=0,得x=-1或x=3(舍去). ∵f(-2)=2+a,f(-1)=-5+a,f(2)=a+22, ∴a+22=20,a=-2. 故最小值為f(-1)=-7. 7.解:(1)f′(x)=1+(x>0),f′()=1+2=3. 故曲線y=f(x)在x=處切線的斜率為3. (2)f′(x)=a+=(x>0). ①當a≥0時,由于x>0,故ax+1>0,f′(x)>0, 所以f(x)的單調遞增區(qū)間為(0,+∞); ②當a<0時,由f′(x)=0,得x
27、=-, 在區(qū)間上f′(x)>0,在區(qū)間上f′(x)<0.所以,函數(shù)f(x)的單調遞增區(qū)間為,單調遞減區(qū)間為. (3)由題可知,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),轉化為[f(x)]max<[g(x)]max,而[g(x)]max=2. 由(2)知,當a≥0時,f(x)在(0,+∞)上單調遞增,值域為R,故不符合題意.(或者舉出反例:存在f(e3)=ae3+3>2,故不符合題意.) 當a<0時,f(x)在上單調遞增,在上單調遞減, 故f(x)的極大值即為最大值,f=-1+ln=-1-ln(-a),所以2>-1-ln(-a),解得a<-. 所
28、以,a的取值范圍為. 8.解:(1)b=,h(x)=a2ln x-4x+x2,h′(x)=-4+3x,h′(1)=a2-1=0,a2=1, ∴h(x)=ln x-4x+x2,由h′(x)=-4+3x=>0, 得x>1或0<x<,所以h(x)的單調遞增區(qū)間是和(1,+∞). (2)函數(shù)g(x)的極大值為0,且b<0, 而f′(x)=-4,令f′(x)=0?x=,f(x)在上單調遞增,上單調遞減, 所以f(x)極大值=f=a2ln-a2=0?a2=4e, 則p(x)=4eln x-4x+bx,根據(jù)題意得p(1)=-4+b≤-8e?b≤4-8e,p′(x)=,令p′(x)=0?x=, ∵4-b≥8e,∴x≤, ∴函數(shù)p(x)在[1,e2]上單調遞減, ∴p(x)最大值=p(1)=-4+b=-8e,得b=4-8e.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。