《(浙江專用)2022-2023高中物理 第三章 相互作用 4 力的合成學(xué)案 新人教版必修1》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2022-2023高中物理 第三章 相互作用 4 力的合成學(xué)案 新人教版必修1(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(浙江專用)2022-2023高中物理 第三章 相互作用 4 力的合成學(xué)案 新人教版必修1
知識內(nèi)容
力的合成
考試要求
c
課時要求
1.理解合力和分力的概念,知道什么叫力的合成.
2.掌握力的平行四邊形定則,知道合力不一定大于分力.
3.會定性判斷合力大小與兩個分力夾角之間的關(guān)系.
4.知道共點力的概念,會用作圖法、計算法求合力.
(2)平行四邊形定則:兩個力合成時,以表示這兩個力的線段為鄰邊作平行四邊形,這兩個鄰邊之間的對角線就代表合力的大小和方向.
如圖1所示,F(xiàn)表示F1與F2的合力.
圖1
二、共點力
1.定義:如果幾個力共同作用在同一點上,或者雖不作
2、用在同一點上,但它們的延長線交于一點,這樣的一組力叫做共點力.
2.力的合成的平行四邊形定則,只適用于共點力.
[即學(xué)即用]
1.判斷下列說法的正誤.
(1)合力與原來那幾個力同時作用在物體上.( × )
(2)合力的作用可以替代原來那幾個力的作用,它與那幾個力是等效替代關(guān)系.( √ )
(3)合力總比分力大.( × )
(4)作用在一個物體上的兩個力,如果大小相等,方向相反,則這兩個力一定是共點力.( × )
2.兩個共點力互相垂直,F(xiàn)1=8 N,F(xiàn)2=6 N,則它們的合力大小F=________ N,合力與F1間的夾角θ=________.(已知sin 53°=0.8,co
3、s 53°=0.6)
答案 10 N 37°
一、合力與分力的關(guān)系
(1)一個成年人或兩個孩子均能提起同一桶水,那么該成年人用的力與兩個孩子用的力的作用效果是否相同?二者能否等效替代?
(2)兩個孩子共提一桶水時,要想省力,兩個人拉力間的夾角應(yīng)大些還是小些?為什么?
答案 (1)作用效果相同;兩種情況下的作用效果均是把同一桶水提起來,能夠等效替代.
(2)夾角應(yīng)小些.提水時兩個孩子對水桶拉力的合力的大小等于一桶水所受的重力,合力不變時,兩分力的大小隨著兩個力之間夾角的減小而減小,因此夾角越小越省力.
合力與分力的關(guān)系
兩分力大小不變時,合力F隨兩分力夾角θ的增大而減
4、小,隨θ的減小而增大.
(1)兩分力同向(θ=0°)時,合力最大,F(xiàn)=F1+F2,合力與分力同向.
(2)兩分力反向(θ=180°)時,合力最小,F(xiàn)=|F1-F2|,合力的方向與較大的一個分力的方向相同.
(3)合力的取值范圍:|F1-F2|≤F≤F1+F2.
合力可以大于某一分力,也可以小于某一分力,還可以等于某一分力.
例1 關(guān)于兩個大小不變的分力與其合力的關(guān)系,下列說法正確的是( )
A.合力的大小隨兩力夾角增大而增大
B.合力的大小不能小于分力中最小者
C.合力的大小一定大于分力中最大者
D.兩個分力夾角小于180°時,合力大小隨著夾角的減小而增大
答案 D
解
5、析 在夾角小于180°范圍內(nèi),合力的大小隨兩力夾角的增大而減小,隨夾角的減小而增大,選項A錯誤,D正確;合力的大小可能比分力大,也可能比分力小,還有可能等于分力,選項B、C錯誤.
例2 力是矢量,它的合成與分解遵循平行四邊形定則,則下列關(guān)于大小分別為7 N和9 N的兩個力的合力的說法正確的是( )
A.合力可能為3 N B.合力不可能為9 N
C.合力一定為16 N D.合力可能為1 N
答案 A
解析 兩力合成時,有|F1-F2|≤F≤F1+F2.當(dāng)兩力夾角為零時合力最大,最大值為9 N+7 N=16 N;當(dāng)夾角為180°時合力最小,最小值為9 N-7 N=2
6、N;故合力介于2 N至16 N之間,A正確,B、C、D錯誤.
二、合力的求解
1.作圖法(如圖2所示)
圖2
2.計算法
(1)兩分力共線時:
①若F1、F2兩力同向,則合力F=F1+F2,方向與兩力同向.
②若F1、F2兩力反向,則合力F=|F1-F2|,方向與兩力中較大的同向.
(2)兩分力不共線時:
可以根據(jù)平行四邊形定則作出力的示意圖,然后由幾何關(guān)系求解對角線,其長度即為合力大?。韵聻閮煞N特殊情況:
圖3
①相互垂直的兩個力的合成(即α=90°):F=,F(xiàn)與F1的夾角的正切值tan β=,如圖3所示.
②兩個等大的力的合成:平行四邊形為菱形,利用
7、其對角線互相垂直平分的特點可解得F合=2Fcos,如圖4所示.
圖4 圖5
若α=120°,則合力大小等于分力大小(如圖5所示).
例3 物體只受兩個力F1和F2的作用,F(xiàn)1=30 N,方向水平向左,F(xiàn)2=40 N,方向豎直向下.求這兩個力的合力F.
答案 50 N,與F1的夾角為53°斜向左下
解析 解法一 圖解法
取單位長度為10 N的力,則分別取3個單位長度、4個單位長度,自O(shè)點引兩條有向線段OF1和OF2分別表示力F1、F2.以O(shè)F1和OF2為兩個鄰邊,作平行四邊形如圖所示,則對角線的長度為5個單位長度,則合力的大小F=5×10 N=50 N.用量角器量出
8、合力F與分力F1的夾角θ為53°,方向斜向左下.
解法二 計算法
實際上是先運用數(shù)學(xué)知識,再回到物理情景中.在如圖所示的平行四邊形中,△OFF1為直角三角形,根據(jù)直角三角形的幾何關(guān)系,可以求得斜邊OF的長度和OF與OF1間的夾角,將其轉(zhuǎn)化為物理問題,就可以求出合力F的大小和方向,則F==50 N,tan θ==,θ為53°,合力F與F1的夾角為53°,方向斜向左下.
1.作圖法求合力時,各個力的圖示必須采用同一標(biāo)度,并且所選力的標(biāo)度的比例要適當(dāng).
2.平行四邊形定則是矢量運算的通用法則,適用于任何矢量的運算.
針對訓(xùn)練 兩個大小相等的共點力F1、F2,當(dāng)它們之間的夾角為90°
9、時合力的大小為20 N,則當(dāng)它們之間夾角為120°時,合力的大小為( )
A.40 N B.10 N
C.20 N D.10 N
答案 B
解析 設(shè)F1=F2=F,當(dāng)它們之間的夾角α=90°時,如圖甲所示,由畫出的平行四邊形(為正方形)得合力為F合===F.
所以F=F合=×20 N=10 N.
當(dāng)兩分力F1和F2之間夾角變?yōu)棣拢?20°時,同理畫出平行四邊形,如圖乙所示.由于平行四邊形的一半為一等邊三角形,因此其合力F′=F1=F2=10 N.
1.(合力大小與夾角的關(guān)系)作用在物體上同一點的兩個力之間的夾角由0°逐漸增大到180°的過程中,合力的大小將(
10、 )
A.逐漸增大
B.逐漸減小
C.先增大后減小
D.先減小后增大
答案 B
解析 在兩個分力大小一定,但是夾角逐漸增大的過程中,合力將一直減小,180°時為兩個力的差,最小,故選項B正確.
2.(合力大小范圍)兩個共點力的大小分別為F1=15 N,F(xiàn)2=8 N,它們的合力大小不可能等于( )
A.9 N B.25 N C.8 N D.21 N
答案 B
解析 F1、F2的合力范圍是|F1-F2|≤F≤F1+F2,故7 N≤F≤23 N,不在此范圍的是25 N,應(yīng)選擇B項.
3.(合力的計算)如圖6所示,水平地面上固定著一根豎直立柱,某人用繩子通過柱
11、頂?shù)墓饣ɑ唽?00 N的貨物拉?。阎死K子的一端,且該繩端與水平方向夾角為30°,則柱頂所受壓力大小為( )
圖6
A.200 N B.100 N
C.100 N D.50 N
答案 B
解析 如圖所示,
定滑輪只改變力的方向,不改變力的大小,
所以繩的拉力F1=F2=100 N,
柱頂所受壓力大小
F=2F1cos 30°=2×100× N=100 N,故B選項正確.
4.(合力的計算)如圖7所示,兩個人共同用力將一個牌匾拉上墻頭.其中一人用了450 N的拉力,另一個人用了600 N的拉力,如果這兩個人所用拉力的夾角是90°,求它們的合力.(已
12、知sin 53°=0.8,cos 53°=0.6)
圖7
答案 750 N,方向與較小拉力的夾角為53°
解析 設(shè)F1=450 N,F(xiàn)2=600 N,合力為F.
由于F1與F2間的夾角為90°,根據(jù)勾股定理,得
F= N=750 N,
合力F與F1的夾角θ的正切tan θ===,
所以θ=53°
一、選擇題
1.兩個大小和方向都確定的共點力,其合力的( )
A.大小和方向都確定
B.大小確定,方向不確定
C.大小不確定,方向確定
D.大小和方向都不確定
答案 A
2.如圖1所示,F(xiàn)1、F2是兩個相互垂直的共點力,其中F1=3 N,F(xiàn)2=4 N,則F1、F
13、2的合力大小為( )
圖1
A.2 N B.5 N
C.10 N D.12 N
答案 B
3.(2018·金華市第一學(xué)期期末)吊墜是日常生活中極為常見的飾品,深受人們喜愛.現(xiàn)將一“心形”金屬吊墜穿在一根細線上,吊墜可沿細線自由滑動.在佩戴過程中,某人手持細線兩端,讓吊墜靜止在空中,如圖2所示,現(xiàn)讓兩手水平向外緩慢移動,不計吊墜與細線間的摩擦,則在此過程中,細線中張力大小變化情況為( )
圖2
A.保持不變 B.逐漸減小
C.逐漸增大 D.先減小后增大
答案 C
4.如圖3所示,輕繩上端固定在天花板上的O點,下端懸掛一個重為10 N的物體A,B是固
14、定的表面光滑的圓柱體.當(dāng)A靜止時,輕繩與天花板的夾角為30°,B受到繩的壓力是( )
圖3
A.5 N B.5 N
C.10 N D.10 N
答案 C
5.如圖4所示為兩個共點力的合力F的大小隨兩分力的夾角θ變化的圖象,則這兩個分力的大小分別為( )
圖4
A.1 N和4 N B.2 N和3 N
C.1 N和5 N D.2 N和4 N
答案 B
解析 由題圖知,兩力方向相同時,合力為5 N.即F1+F2=5 N;方向相反時,合力為1 N,即|F1-F2|=1 N.故F1=3 N,F(xiàn)2=2 N,或F1=2 N,F(xiàn)2=3 N,B正確.
6.兩根長
15、度相同、材料相同的細繩懸掛一塊小黑板,以下四種掛法中,最容易拉斷細繩的掛法是( )
答案 D
解析 由題意知,兩繩子的拉力的合力相等,根據(jù)力的平行四邊形定則,可知當(dāng)兩繩子的夾角越大時,其拉力也越大.因此,D圖中細繩的拉力最大,故選D.
7.有三個共點力,大小分別為3 N、6 N和8 N,其合力范圍是( )
A.0 N~17 N B.1 N~17 N
C.1 N~11 N D.2 N~11 N
答案 A
8.兩個共點力同向時合力為a,反向時合力為b,當(dāng)兩個力垂直時合力大小為( )
A. B.
C. D.
答案 B
解析 假設(shè)兩個力的大小分別為
16、F1、F2,且F1>F2,則
同向時:F1+F2=a ①
反向時:F1-F2=b ②
當(dāng)兩力垂直時:F= ③
由①②得F1=,F(xiàn)2=,
代入③得F=,選項B正確.
9.(多選)關(guān)于共點力,下列說法中正確的是( )
A.作用在同一個物體上的兩個力,如果大小相等,方向相反,這兩個力是共點力
B.作用在一個物體上的兩個力,如果是一對平衡力,則這兩個力是共點力
C.作用在一個物體上的幾個力,如果它們的作用點在同一點上,則這幾個力是共點力
D.作用在一個物體上的幾個力,如果它們的作用線相交于同一點,則這幾個力是共點力
答案 BCD
解析 根據(jù)共點力的概念,幾個力如果都作用在物體
17、的同一點,或者它們的作用線相交于同一個點,這幾個力叫做共點力,所以C、D正確;一對平衡力一定作用在同一條直線上,它們一定是共點力,故B正確;對于A選項中所描述的兩個力,它們有可能一上一下,互相平行但不共點,所以A錯誤.
10.同時作用在某物體上的兩個方向相反的共點力,大小分別為6 N和8 N,當(dāng)8 N的力逐漸減小到零的過程中,兩力合力的大小( )
A.先減小后增大 B.先增大后減小
C.逐漸增大 D.逐漸減小
答案 A
解析 當(dāng)8 N的力減小到6 N時,兩個力的合力最小為0,若再減小,兩力的合力又將逐漸增大,兩力的合力最大為6 N,故A正確.
二、非選擇題
11.已知一
18、個物體受到100個力的作用處于靜止?fàn)顟B(tài),現(xiàn)把其中一個大小為8 N的力的方向轉(zhuǎn)過90°,其余的力不變,求此時物體受到的合力大?。?
答案 8 N
解析 物體受到100個力的作用而處于靜止?fàn)顟B(tài)時,合力為零,其中一個大小為8 N的力與其余99個力的合力大小相等、方向相反,即其余99個力的合力大小為8 N,方向與8 N的力相反.將8 N的力的方向轉(zhuǎn)過90°時,與其余99個力的合力的夾角為90°,根據(jù)平行四邊形定則得,物體受到的合力大小為F合=8 N.
12.如圖5所示,一條小船在河中心向正東方向行駛,船上掛起一風(fēng)帆,帆受側(cè)向風(fēng)作用,風(fēng)力大小F1為100 N,方向為東偏南30°,為了使船受到的合力恰能沿正東方向,岸上一人用一根繩子拉船,繩子方向與河岸垂直,求出風(fēng)力和繩子拉力的合力大小及繩子拉力F2的大?。?
圖5
答案 50 N 50 N
解析 如圖所示,以F1、F2為鄰邊作平行四邊形,使合力F沿正東方向,則F=F1cos 30°=100× N=50 N
F2=F1sin 30°=100× N=50 N.