2020高考數(shù)學(xué) 專題復(fù)習(xí) 軌跡方程

上傳人:艷*** 文檔編號:110465113 上傳時間:2022-06-18 格式:DOC 頁數(shù):7 大小:250.50KB
收藏 版權(quán)申訴 舉報 下載
2020高考數(shù)學(xué) 專題復(fù)習(xí) 軌跡方程_第1頁
第1頁 / 共7頁
2020高考數(shù)學(xué) 專題復(fù)習(xí) 軌跡方程_第2頁
第2頁 / 共7頁
2020高考數(shù)學(xué) 專題復(fù)習(xí) 軌跡方程_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020高考數(shù)學(xué) 專題復(fù)習(xí) 軌跡方程》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué) 專題復(fù)習(xí) 軌跡方程(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2020高考數(shù)學(xué)專題復(fù)習(xí): 軌跡方程 一、直譯法 求曲線方程(或動點軌跡方程)的一般步驟: ⑴建系設(shè)點:適當(dāng)建立坐標系,設(shè)點為所求曲線上的任意一點 ⑵翻譯條件:寫出點所滿足的條件 ⑶列出方程:根據(jù)所給條件列出方程 ⑷化簡方程:把所列的方程化為最簡形式 求出動點的軌跡方程后,要注意檢驗變量的取值范圍,如果有失根就要補充說明,如果有增根就要徹底刪除 1.已知的兩個頂點、的坐標分別是,若邊、所在直線的斜率之積等于, 求頂點的軌跡方程 2.已知的兩個頂點、的坐標分別是,若邊所在直線的斜率之積等于,求頂點的軌跡方程 3.已知點到定

2、點的距離與點到定直線的距離之比為,求動點的軌跡的方程 4.已知,點在軸上,點在的正半軸上,點在直線上,且. 當(dāng)在軸上移動時,求點軌跡方程 二、定義法 我們已經(jīng)學(xué)過了橢圓、雙曲線、拋物線的方程,如果能夠根據(jù)已知條件確定所求動點的軌跡是什么曲線,就可 以直接建立軌跡方程 兩圓外切 兩圓內(nèi)切 直線與圓相切 5.在中,、,若三邊、、的長成等差數(shù)列,求頂點的軌跡方程 6.

3、動點到定點的距離比點到軸的距離大,求點的軌跡方程 7.動圓與定圓和圓都外切,則動圓圓心的軌跡方程 8.動圓恒過定點,且與定圓相切,求動圓圓心的軌跡方程 9.圓與兩圓中的一個內(nèi)切,另一個外切,求圓的圓心軌跡方程 10.動圓與定圓外切,且與直線相切,則動圓的圓心的軌跡方程 11.動圓與定圓內(nèi)切,和定圓外切,求動圓圓心的軌跡方程 12.已知圓,定點,點是線段的中垂線與半徑的交點,求的的軌跡方程 13.已知定點,以為一個焦點作

4、過的橢圓,求另一焦點的軌跡方程 三、轉(zhuǎn)移代入法 如果已知一個動點的軌跡方程,要求另一個動點的軌跡方程,通常采用遷移的思想解題,先假設(shè)兩個動點的坐標,建立所求動點與已知動點坐標之間的關(guān)系,代入已知動點所滿足的曲線方程即得所求動點的軌跡方程。 14.已知點在直線上運動,定點,是線段延長線上的一點,且,求點的軌跡方程 15.設(shè)為雙曲線上一動點,為坐標原點,為線段的中點,求點的軌跡方程 16.已知的頂點、的坐標分別是和,若邊上中線的長為,求頂點的軌跡方程 17.已知線段的兩個端點分別在軸、軸上滑動,,點是上一點

5、,且, 求點的軌跡方程 18.定點和圓上的動點,若點滿足,求點的軌跡方程 19.從圓上任意一點向軸作垂線段,為垂足,且線段 上一點滿足關(guān)系式 ,求點的軌跡方程 20.橢圓的方程為,是它的左焦點,是橢圓上一個動點,為坐標原點,求 的重心的軌跡方程 21.設(shè)、是雙曲線的兩個焦點,點在雙曲線上運動,求的重心的軌跡方程

6、22.若的兩個頂點、的坐標分別為、,而頂點在曲線上移動, 求的重心的軌跡方程 23.點是圓上個動點,,當(dāng)點在圓上運動時,線段的中點的軌跡方程 代入消參法 24.已知橢圓,求斜率為的平行弦的中點的軌跡方程 25.過拋物線焦點的直線與拋物線交于兩點,為坐標原點.求的重心的軌跡方程 26.傾斜角為的直線交橢圓于兩點,求線段中點的軌跡方程 27.是拋物線上一點,直線過點且與拋物線交于另一點.若直線與過點的切線垂直,

7、 求線段中點的軌跡方程 O A P B x y 28.和分別在射線上移動,且,動點滿足. (Ⅰ)求的值 (Ⅱ)求點的軌跡的方程,并說明它表示怎樣的曲線? 29.已知直線過橢圓 的右焦點,且與相交于兩點.設(shè), Q x F 求點的軌跡方程 30.中,,,直線方程是,當(dāng)在直線上運動時,求外接圓的圓心 的軌跡方程 31.求過點的直線被橢圓所截弦的中點的軌跡方程 . 五.軌跡和軌跡方程是兩個不同的概念,軌跡是指滿足條件的動點所組成的圖形,而軌跡方程是指滿足條件 的動點的坐標、之間的關(guān)系式,但往往先有軌跡方程我們才可以判定動點的軌跡 32.設(shè)圓與圓外切,與直線相切,求的圓心軌跡 33.已知一動圓與圓相內(nèi)切,且過,求這個動圓圓心的軌跡 內(nèi)切外切

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲