《江蘇省無(wú)錫市2020年高考數(shù)學(xué) 第二十六講 玩轉(zhuǎn)定義練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省無(wú)錫市2020年高考數(shù)學(xué) 第二十六講 玩轉(zhuǎn)定義練習(xí)(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2020年高考數(shù)學(xué) 圓錐曲線篇
玩轉(zhuǎn)定義
定義在解題中的妙用
1短軸長(zhǎng)為,離心率的橢圓兩焦點(diǎn)為F1,F(xiàn)2,過(guò)F1作直線交橢圓于A、B兩點(diǎn),則△ABF2的周長(zhǎng)為
2已知橢圓C:+=1 (a>b>0)的左,右焦點(diǎn)為F1,F(xiàn)2,離心率為,過(guò)F2的直線l交C于A、B兩點(diǎn),若△AF1B的周長(zhǎng)為4,則C的方程為
3已知為橢圓的兩個(gè)焦點(diǎn),過(guò)的直線交橢圓于A、B兩點(diǎn)若,則=______________。
4已知為橢圓上的一點(diǎn),分別為圓和圓上的點(diǎn),則的最小值為
5設(shè)F1,F(xiàn)2分別是橢圓+=1的左,右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4
2、),則|PM|+|PF1|的最大值為_(kāi)_______.
6已知拋物線y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),又有點(diǎn)A(3,2),求|PA|+|PF|的最小值,并求出取最小值時(shí)點(diǎn)P的坐標(biāo).
定義+性質(zhì)
7已知點(diǎn)是橢圓(,)上兩點(diǎn),且,則=
8、是橢圓上一點(diǎn),、是橢圓的兩個(gè)焦點(diǎn),求的最大值與最小值
9、如圖,把橢圓的長(zhǎng)軸分成等份,過(guò)每個(gè)分點(diǎn)作軸的垂線交橢圓的上半部分于七個(gè)點(diǎn),是橢圓的一個(gè)焦點(diǎn)
則________________
10如圖2所示,為雙曲線的左焦點(diǎn),雙曲線上的點(diǎn)與關(guān)于軸對(duì)稱(chēng),則的值是
11、P是雙曲線左支上的一點(diǎn),F(xiàn)1、F2分別是
3、左、右焦點(diǎn),且焦距為2c,則的內(nèi)切圓的圓心的橫坐標(biāo)為
12、點(diǎn)P是橢圓+=1上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),且△PF1F2的內(nèi)切圓半徑為1,當(dāng)P在第一象限時(shí),P點(diǎn)的縱坐標(biāo)為_(kāi)_______.
13、橢圓的左,右焦點(diǎn)分別為弦過(guò),若的內(nèi)切圓的周長(zhǎng)為兩點(diǎn)的坐標(biāo)分別為則= .
14、在中,.若以為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),則該橢圓的離心率 .
定義+性質(zhì)+最值問(wèn)題
15、已知實(shí)數(shù)滿(mǎn)足,求的最大值與最小值
16、橢圓上的點(diǎn)到直線l:的距離的最小值為_(kāi)__________.
17橢圓的內(nèi)接矩形的面積的最大值為
4、
命題陷阱
18設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱(chēng)軸,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為-4,求此橢圓方程.
19已知,一曲線上的動(dòng)點(diǎn)到距離之差為6,則雙曲線的方程為
20雙曲線的漸近線為,則離心率為
21已知雙曲線的漸近線方程是,焦點(diǎn)在坐標(biāo)軸上且焦距是10,則此雙曲線的方程為 ;
特殊解題技巧
22橢圓的一條弦被平分,那么這條弦所在的直線方程是
方法與技巧
雙曲線標(biāo)準(zhǔn)方程的求法
(1)當(dāng)已知雙曲線的焦點(diǎn)不明確而又無(wú)法確定時(shí),
5、其標(biāo)準(zhǔn)方程可設(shè)為-=1 (mn>0),這樣可避免討論和復(fù)雜的計(jì)算;也可設(shè)為Ax2+By2=1 (AB<0),這種形式在解題時(shí)更簡(jiǎn)便;
(2)當(dāng)已知雙曲線的漸近線方程bx±ay=0,求雙曲線方程時(shí),可設(shè)雙曲線方程為b2x2-a2y2=λ(λ≠0),據(jù)其他條件確定λ的值;
(3)與雙曲線-=1有相同的漸近線的雙曲線方程可設(shè)為-=λ (λ≠0),據(jù)其他條件確定λ的值.
失誤與防范
1.區(qū)分雙曲線中的a,b,c大小關(guān)系與橢圓中的a,b,c大小關(guān)系,在橢圓中a2=b2+c2,而在雙曲線中c2=a2+b2.
2.雙曲線的離心率e∈(1,+∞),而橢圓的離心率e∈(0,1).
3.雙曲線-=1 (a>0,b>0)的漸近線方程是y=±x,-=1 (a>0,b>0)的漸近線方程是y=±x.
4.若利用弦長(zhǎng)公式計(jì)算,在設(shè)直線斜率時(shí)要注意說(shuō)明斜率不存在的情況.
5.直線與雙曲線交于一點(diǎn)時(shí),不一定相切,例如:當(dāng)直線與雙曲線的漸近線平行時(shí),直線與雙曲線相交于一點(diǎn),但不是相切;反之,當(dāng)直線與雙曲線相切時(shí),直線與雙曲線僅有一個(gè)交點(diǎn).