高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(2)完整講義(學(xué)生版)

上傳人:艷*** 文檔編號:111456006 上傳時間:2022-06-20 格式:DOC 頁數(shù):4 大?。?39KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(2)完整講義(學(xué)生版)_第1頁
第1頁 / 共4頁
高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(2)完整講義(學(xué)生版)_第2頁
第2頁 / 共4頁
高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(2)完整講義(學(xué)生版)_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(2)完整講義(學(xué)生版)》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 直線與圓錐曲線 板塊一 直線與橢圓(2)完整講義(學(xué)生版)(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 學(xué)而思高中完整講義:直線與圓錐曲線.板塊一.直線與橢圓(1).學(xué)生版 1.橢圓的定義:平面內(nèi)與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡(或集合)叫做橢圓. 這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距. 2.橢圓的標(biāo)準(zhǔn)方程: ①,焦點是,,且. ②,焦點是,,且. 3.橢圓的幾何性質(zhì)(用標(biāo)準(zhǔn)方程研究): ⑴范圍:,; ⑵對稱性:以軸、軸為對稱軸,以坐標(biāo)原點為對稱中心,橢圓的對稱中心又叫做橢圓的中心; ⑶橢圓的頂點:橢圓與它的對稱軸的四個交點,如圖中的; ⑷長軸與短軸:焦點所在的對稱軸上,兩個頂點間的線段稱為橢圓的長軸,如圖中線段的;另一對頂點間的線段叫做

2、橢圓的短軸,如圖中的線段. ⑸橢圓的離心率:,焦距與長軸長之比,,越趨近于,橢圓越扁; 反之,越趨近于,橢圓越趨近于圓. 4.直線:與圓錐曲線:的位置關(guān)系: 直線與圓錐曲線的位置關(guān)系可分為:相交、相切、相離.對于拋物線來說,平行于對稱軸的直線與拋物線相交于一點,但并不是相切;對于雙曲線來說,平行于漸近線的直線與雙曲線只有一個交點,但并不相切.這三種位置關(guān)系的判定條件可歸納為: 設(shè)直線:,圓錐曲線:,由 消去(或消去)得:. 若,,相交;相離;相切. 若,得到一個一次方程:①為雙曲線,則與雙曲線的漸近線平行;②為拋物線,則與拋物線的對稱軸平行. 因此直線與拋物線、雙曲線有一

3、個公共點是直線與拋物線、雙曲線相切的必要條件,但不是充分條件. 5.連結(jié)圓錐曲線上兩個點的線段稱為圓錐曲線的弦. 求弦長的一種求法是將直線方程與圓錐曲線的方程聯(lián)立,求出兩交點的坐標(biāo),然后運用兩點間的距離公式來求; 另外一種求法是如果直線的斜率為,被圓錐曲線截得弦兩端點坐標(biāo)分別為,則弦長公式為. 兩根差公式: 如果滿足一元二次方程:, 則(). 6.直線與圓錐曲線問題的常用解題思路有: ①從方程的觀點出發(fā),利用根與系數(shù)的關(guān)系來進(jìn)行討論,這是用代數(shù)方法來解決幾何問題的基礎(chǔ).要重視通過設(shè)而不求與弦長公式簡化計算,并同時注意在適當(dāng)時利用圖形的平面幾何性質(zhì). ②以向量為工具,利用向量的

4、坐標(biāo)運算解決與中點、弦長、角度相關(guān)的問題. 典例分析 【例1】 設(shè)橢圓過點,且左焦點為 ⑴求橢圓的方程; ⑵當(dāng)過點的動直線與橢圓相交與兩不同點時,在線段上取點,滿足,證明:點總在某定直線上. 【例2】 已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切. ⑴求橢圓的方程; ⑵設(shè),,是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明直線與軸相交于定點; ⑶在⑵的條件下,過點的直線與橢圓交于,兩點,求的取值范圍. 【例3】 已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為. ⑴求橢圓的標(biāo)準(zhǔn)方程

5、; ⑵若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標(biāo). 【例4】 在直角坐標(biāo)系中,點到點,的距離之和是,點的軌跡是與軸的負(fù)半軸交于點,不過點的直線與軌跡交于不同的兩點和. ⑴求軌跡的方程; ⑵當(dāng)時,求與的關(guān)系,并證明直線過定點. 【例5】 在直角坐標(biāo)系中,點到點,的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點和. ⑴求軌跡的方程; ⑵是否存在常數(shù),?若存在,求出的值;若不存在,請說明理由. 【例6】 設(shè)橢圓的一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率,且過橢圓右焦點的直線

6、與橢圓交于兩點. ⑴求橢圓的方程; ⑵是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由. ⑶若是橢圓經(jīng)過原點的弦,,求證:為定值. 【例7】 已知橢圓的左、右焦點分別為、,短軸兩個端點為、,且四邊形是邊長為的正方形. ⑴求橢圓的方程; ⑵若、分別是橢圓長軸的左、右端點,動點滿足,連結(jié),交橢圓于點. 證明:為定值. ⑶在⑵的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線、的交點,若存在,求出點的坐標(biāo);若不存在,說明理由. 【例8】 已知橢圓的中心為坐標(biāo)原點,焦點在軸上,斜率為且過橢圓右焦點的直線交橢圓于、兩點,與共線. ⑴求橢圓的離心率; ⑵設(shè)為橢圓上任意一點,且,證明為定值. 【例9】 已知橢圓的中心在原點,焦點在軸上,經(jīng)過點且離心率.過定點的直線與橢圓相交于,兩點. ⑴求橢圓的方程; ⑵在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標(biāo);若不存在,請說明理由.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲