《七年級(jí)數(shù)學(xué) 暑假提高練習(xí) 邊角關(guān)系(無(wú)答案)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《七年級(jí)數(shù)學(xué) 暑假提高練習(xí) 邊角關(guān)系(無(wú)答案)(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、此資料由網(wǎng)絡(luò)收集而來(lái),如有侵權(quán)請(qǐng)告知上傳者立即刪除。資料共分享,我們負(fù)責(zé)傳遞知識(shí)。
提高練習(xí) 邊角關(guān)系
一、邊之間的關(guān)系的應(yīng)用
例1:a,b,c是三角形的三條邊長(zhǎng),化簡(jiǎn): |a+b+c| -|a-b-c|-|a-b+c|-|a+b-c|.
例2:已知:如圖,在△ABC中有D、E兩點(diǎn),求證:BD+DE+EC<AB+AC.
例3:不等邊三角形的高分別為4和12,若第三條高的長(zhǎng)度也是整數(shù),試求它的長(zhǎng)。
練習(xí): 1:a、b、c是△ABC的邊長(zhǎng),化簡(jiǎn)|a-b-c|+|a+b-c|-|-a-b-c|
2、
2:如圖,已知P是△ABC內(nèi)任意一點(diǎn),求證:PB+PC<AB+AC。
3:已知P是△ABC內(nèi)任意一點(diǎn),試說(shuō)明AB+BC+CA>PA+PB+PC>(AB+BC+CA)的理由.
4、如圖,在△ABC中,AD是BC邊上的中線(xiàn),△ADC的周長(zhǎng)比△ABD的周長(zhǎng)多5cm,AB與AC的和為11cm,求AC的長(zhǎng).
二、角之間關(guān)系的應(yīng)用
例1:已知非直角三角形ABC中,∠A=45°,高BD和CE所在的直線(xiàn)交于H,你能求出∠BHC的度數(shù)嗎?
例2:如圖,已知△ABC三個(gè)內(nèi)角的平分線(xiàn)相交于點(diǎn)O,OG⊥AB,垂足為G
3、,∠1=∠AOE,∠2=∠BOG,試說(shuō)明∠1=∠2.
練習(xí):1、若等腰三角形一腰上的高與另一腰的夾角為45°,則這個(gè)等腰三角形的底角為
2、如圖,已知∠MON=,點(diǎn)A、B分別在射線(xiàn)ON、OM上移動(dòng)(不與O重合),
AC平分∠OAB,BD平分∠ABM,直線(xiàn)AC、BD交于點(diǎn)C。試問(wèn):隨著A、B點(diǎn)的移動(dòng)變化,
∠ACB的大小是否也隨之變化?若變化,說(shuō)明理由;若不變求出其值。
B
M
D
N
A
C
M
3、如圖所示,CE平分∠ACD,F為CA延長(zhǎng)線(xiàn)上一點(diǎn),F(xiàn)G∥CE交
4、AB于點(diǎn)G,∠ACD=100°,∠AGF=20°,求出∠B的度數(shù)?
二、有關(guān)面積的問(wèn)題
例1:如圖所示,已知在△ABC中,AB=AC=8,P是BC上任意一點(diǎn),PD⊥AB于點(diǎn)D,PE⊥AC于點(diǎn)E.若△ABC的面積為14,問(wèn):PD+PE的值是否確定?若能確定,是多少?若不能確定,請(qǐng)說(shuō)明理由.
例2:如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C= BC,C1A=CA,順次連結(jié)A1,B1,C1,得到△A1B1C1. 第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,
5、B2,C2,使A2B1= A1B1,B2C1= B1C1,C2A1= C1A1,順次連結(jié)A2,B2,C2,得到△A2B2C2,…,按此規(guī)律,要使得到的三角形的面積超過(guò)2020,最少經(jīng)過(guò) 次操作.
練習(xí):1、如圖,某校有一塊三角形空地,要在上面栽種四種不同的花草,需將該空地分成面積相等的四塊.請(qǐng)你設(shè)計(jì)幾種不同的劃分方案.
2、如圖,AD為△ABC的中線(xiàn),BE為△ABD的中線(xiàn).
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD
6、=5,則點(diǎn)E到BC邊的距離為多少?
三、多邊形內(nèi)、外角和與鑲嵌
例1:一多邊形除一內(nèi)角外,其余各內(nèi)角之和為2570°,則這個(gè)內(nèi)角等于多少?這個(gè)多邊形是幾邊形?
例2:一個(gè)凸多邊形的內(nèi)角從小到大排列起來(lái),恰好依次增加相同的度數(shù),其中最小角是100°,最大角為140°,則這個(gè)多邊形的邊數(shù)是
例3: 某單位的地板由三種正多邊形鋪成,設(shè)這三種多邊形的邊數(shù)為m、n、p求的值.
練習(xí):1、如果把一個(gè)多邊形截去一個(gè)三角形,剩下的多邊形的內(nèi)角和是2160°,那么原來(lái)的多邊形的邊數(shù)是 。
2、一個(gè)多邊形截去一個(gè)內(nèi)角后,形成另一個(gè)多邊形,它的內(nèi)角和為2520°,則原來(lái)多邊形的邊數(shù)不可能是( )
A、15條 B、16條 C、17條 D、18條
3、 用黑、白兩種顏色的正六邊形地磚按如圖3所示的規(guī)律,拼成若干個(gè)圖案.
(1)第四個(gè)圖案中有白色地磚_______塊; (2)第n個(gè)圖案中有白色地磚________塊.
4、多邊形的內(nèi)角和與一個(gè)外角的度數(shù)總和為1350°,(1)求多邊形的邊數(shù),(2)這個(gè)外角為多少度?