安徽省2019年中考數(shù)學(xué)總復(fù)習(xí) 第一部分 系統(tǒng)復(fù)習(xí) 成績基石 第六章 圓 第22講 圓的基本性質(zhì)課件.ppt
《安徽省2019年中考數(shù)學(xué)總復(fù)習(xí) 第一部分 系統(tǒng)復(fù)習(xí) 成績基石 第六章 圓 第22講 圓的基本性質(zhì)課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《安徽省2019年中考數(shù)學(xué)總復(fù)習(xí) 第一部分 系統(tǒng)復(fù)習(xí) 成績基石 第六章 圓 第22講 圓的基本性質(zhì)課件.ppt(21頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第六章圓,第22講圓的基本性質(zhì),考點(diǎn)1圓的有關(guān)概念與圓的對稱性,1.圓的有關(guān)概念(1)圓:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合;這個(gè)叫做圓心,這個(gè)叫做半徑;圓心確定了圓的位置,半徑確定了圓的大?。?2)?。簣A上任意兩點(diǎn)間的部分叫做弦;小于半圓的弧叫做劣弧,大于半圓的弧叫做優(yōu)?。?3)弦:連接圓上兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫做直徑,直徑是圓中最大的弦.(4)圓心角:頂點(diǎn)在的角叫做圓心角.(5)圓周角:頂點(diǎn)在圓上,兩邊都和圓相交的角叫做圓周角.(6)等圓:半徑的圓叫做等圓.(7)等?。涸谕瑘A或等圓中,能夠重合的弧叫做等?。?8)弦心距:圓心到弦的叫做弦心距.,定點(diǎn),定長,圓心,相等,距離,2.圓的基本性質(zhì)(1)同圓或等圓的半徑.(2)圓的直徑等于同圓或等圓半徑的倍.(3)圓既是中心對稱圖形,圓心是對稱中心,也是軸對稱圖形,過圓心的每一條直線都是它的對稱軸,還是旋轉(zhuǎn)對稱圖形,繞圓心旋轉(zhuǎn)任何一個(gè)角度都與原圖形重合.,3.圓心角、弧、弦、弦心距之間的關(guān)系(1)定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對弦的弦心距相等.(2)推論:在同圓或等圓中,①圓心角相等,②弦相等,③弦的弦心距相等,④弦對的弧相等,如果以上四條中有一條成立,那么另外三條也成立.,4.垂徑定理(1)垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條?。?2)垂徑定理的推論:a.圓的兩條平行弦所夾的弧相等.b.一條直線如果具有:①經(jīng)過圓心,②垂直于弦,③平分弦,④平分弦所對的?。@四條中有兩條成立,則這條直線也滿足其余的兩條.,相等,2,考點(diǎn)2圓周角定理及推論,1.圓周角定理(1)一條弧所對的圓周角等于它所對的圓心角的.(2)圓周角定理和推論:①在同圓或等圓中,同弧或等弧所對的圓周角相等;相等的圓周角所對的弧也相等.②半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑、所對的弧是半圓.,2.圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角;圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對角(相鄰的內(nèi)角的對角).,點(diǎn)撥?“圓的有關(guān)性質(zhì)”常作為輔助線:①有弦時(shí),過圓心作弦的垂線段,過弦的一個(gè)端點(diǎn)作半徑,這樣由“弦的一半、表示弦心距的垂線段、圓的半徑”構(gòu)成了直角三角形.②有直徑時(shí),作出這條直徑所對的圓周角,這個(gè)圓周角是直角;如果有圓周角是直角,作出它所對的弦,這條弦就是直徑.,歸納?垂徑定理及其推論是證明兩線段相等,兩條弧相等及兩直線垂直的重要依據(jù)之一,在有關(guān)弦長、弦心距的計(jì)算中常常需要作垂直于弦的線段,構(gòu)造直角三角形.,一半,互補(bǔ),命題點(diǎn)圓周角定理及推論,命題趨勢?圓的基本性質(zhì)是安徽中考重點(diǎn),命題角度:1.綜合利用垂徑定理,圓心角、弧、弦、弦心距之間的關(guān)系定理,直徑所對的圓周角為直角,等腰三角形性質(zhì)、全等或相似三角形的判定和性質(zhì)、勾股定理等來進(jìn)行有關(guān)圓的半徑和弦的計(jì)算.2.綜合運(yùn)用圓周角定理及其推論、三角形內(nèi)角和定理、平行四邊形的性質(zhì)及平行線的性質(zhì)進(jìn)行與圓有關(guān)的角度的計(jì)算.預(yù)測?2019年將會(huì)考查有關(guān)圓的基本性質(zhì)應(yīng)用的解答題.,1.[2016安徽,T10,4分]如圖,,Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC.則線段CP長的最小值為()A.B.2C.D.,B,2.[2018安徽,T20,10分]如圖,⊙O為銳角△ABC的外接圓,半徑為5.(1)用尺規(guī)作圖作出∠BAC的平分線,并標(biāo)出它與劣弧BC的交點(diǎn)E;(保留作圖痕跡,不寫作法)(2)若(1)中的點(diǎn)E到弦BC的距離為3,求弦CE的長.,規(guī)范解答:,︵,︵,︵,(1)如圖,AE為所作.(4分)(2)如圖,連接OE交BC于點(diǎn)F,連接OC,EC.∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE=CE,∴OE⊥BC.∵EF=3,∴OF=5-3=2.在Rt△OCF中,CF==.在Rt△CEF中,CE==.(10分),3.[2017安徽,T20,10分]如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點(diǎn)C作CE∥AD交△ABC的外接圓O于點(diǎn)E,連接AE.,(1)求證:四邊形AECD為平行四邊形;,(2)連接CO,求證:CO平分∠BCE.,解:(1)證明:根據(jù)圓周角定理知∠E=∠B.又∵∠B=∠D,∴∠E=∠D.∵AD∥CE,∴∠D+∠DCE=180.∴∠E+∠DCE=180.∴AE∥DC.∴四邊形AECD為平行四邊形.,(2)證明:如圖,連接OE,OB.,由(1),得四邊形AECD為平行四邊形,∴AD=EC.∵AD=BC,∴EC=BC.∵OC=OC,OE=OB,∴△OCE≌△OCB(SSS).∴∠ECO=∠BCO,即CO平分∠BCE.,4.[2014安徽,T19,10分]如圖,在⊙O中,半徑OC與弦AB垂直,垂足為E,以O(shè)C為直徑的圓與弦AB的一個(gè)交點(diǎn)為F,D是CF延長線與⊙O的交點(diǎn).若OE=4,OF=6,求⊙O的半徑和CD的長.,解:∵OC為小圓的直徑,∴∠OFC=90,即OF⊥CD.∴CF=DF.又∵OE⊥AB,∴∠OEF=∠OFC=90.∵∠FOE=∠COF,∴△OEF∽△OFC.∴=.∴OC===9.在Rt△OFC中,CF===,∴CD=2CF=.,類型1垂徑定理,解題要領(lǐng)?一般思維模式是作弦心距、連半徑等輔助線,構(gòu)造直角三角形,利用垂徑定理以及勾股定理求弦長、半徑、弦心距或弓高(這四個(gè)數(shù)量中,已知兩個(gè)數(shù)量求另兩個(gè)數(shù)量).,1.[2018安順]已知⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8cm,則AC的長為()A.2cmB.4cmC.2cm或4cmD.2cm或4cm,C,2.[2018衢州]如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是(),A.3cmB.cmC.2.5cmD.cm,3.[2018孝感]已知⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=16cm,CD=12cm,則弦AB和CD之間的距離是cm.,D,2或14,類型2圓心角、弧、弦之間的關(guān)系,4.如圖,在⊙O中,A,C,D,B是⊙O上四點(diǎn),OC,OD分別交AB于點(diǎn)E,F(xiàn),且AE=BF.下列結(jié)論不正確的是()A.OE=OFB.AC=BDC.AC=CD=DBD.CD∥AB,解題要領(lǐng)?圓心角、弧、弦之間的關(guān)系定理,提供了從圓心角到弧到弦的轉(zhuǎn)化方式,為證明角相等、線段相等和弧相等提供了新思路,解題時(shí)要根據(jù)具體條件靈活選擇應(yīng)用.,︵,︵,5.[2018雙清模擬]如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是AF的三等分點(diǎn)(AG>GF),BG交AF于點(diǎn)H,若AB的度數(shù)為30,則∠GHF等于(),A.40B.45C.55D.80,︵,︵,︵,︵,C,A,類型3圓周角定理,6.[2018陜西]如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65,作CD∥AB,并與⊙O相交于點(diǎn)D,連接BD,則∠DBC的大小為()A.15B.35C.25D.45,解題要領(lǐng)?①在同圓中,注意運(yùn)用圓心角、圓周角、弦、弧等量關(guān)系的轉(zhuǎn)化;②圓的直徑與直徑所對的圓周角為直角的轉(zhuǎn)化;③如果題干中無對應(yīng)圖形時(shí),避免遺漏符合條件的圖形的其他情形.,A,︵,7.[2018威海]如圖,⊙O的半徑為5,AB為弦,點(diǎn)C為AB的中點(diǎn),若∠ABC=30,則弦AB的長為()A.B.5C.D.,8.[2018白銀]如圖,⊙A過點(diǎn)O(0,0),C(,0),D(0,1),點(diǎn)B是x軸下方⊙A上的一點(diǎn),連接BO,BD,則∠OBD的度數(shù)是()A.15B.30C.45D.60,D,B,類型4圓的確定,9.[2018煙臺(tái)]如圖,方格紙上每個(gè)小正方形的邊長均為1個(gè)單位長度,點(diǎn)O,A,B,C在格點(diǎn)(兩條網(wǎng)格線的交點(diǎn)叫格點(diǎn))上,以點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系,則過A,B,C三點(diǎn)的圓的圓心坐標(biāo)為.,解題要領(lǐng)?三角形三條邊的垂直平分線交于一點(diǎn),該點(diǎn)叫做三角形的外心,即三角形外接圓的圓心;三角形外接圓的圓心到三角形三個(gè)頂點(diǎn)的距離相等;確定三角形的外心,只需作三角形兩條邊的垂直平分線,兩條垂直平分線的交點(diǎn)即為三角形的外心.,(-1,-2),10.[2018內(nèi)江]已知△ABC的三邊a,b,c,滿足a+b2+|c-6|+28=+10b,則△ABC的外接圓半徑=.,類型5圓內(nèi)接四邊形的性質(zhì),11.[2018邵陽]如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,∠BCD=120,則∠BOD的大小是()A.80B.120C.100D.90,解題要領(lǐng)?圓內(nèi)接四邊形經(jīng)常與圓周角定理結(jié)合考查,注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.,B,12.[2018濟(jì)寧]如圖,點(diǎn)B,C,D在⊙O上,若∠BCD=130,則∠BOD的度數(shù)是()A.50B.60C.80D.100,13.[2019預(yù)測]如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是CD上一點(diǎn),且DF=BC,連接CF并延長交AD的延長線于點(diǎn)E,連接AC,若∠ABC=105,∠BAC=25,則∠E的度數(shù)為.,︵,︵,︵,D,50,類型6圓的最值問題,14.[2018安徽四模]如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn),若⊙O的半徑為6,則GE+FH的最大值為()A.6B.9C.10D.12,15.[2018宜賓]在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為()A.B.C.34D.10,D,B,類型7與圓的基本性質(zhì)相關(guān)的探究問題,16.[2019預(yù)測]如圖,點(diǎn)B,C為⊙O上兩動(dòng)點(diǎn),過點(diǎn)B作BE∥AC,交⊙O于點(diǎn)E,點(diǎn)D為射線BC上一動(dòng)點(diǎn),且AC平分∠BAD,連接CE.(1)求證:AD∥EC;,解:(1)證明:∵AC平分∠BAD,∴∠BAC=∠DAC.∵∠E=∠BAC,∴∠E=∠DAC.∵BE∥AC,∴∠E=∠ACE,∴∠ACE=∠DAC,∴AD∥EC.,(2)當(dāng)四邊形EBCA是矩形時(shí),∠ACB=90,即AC⊥BD.∴∠ACB=∠ACD=90.∵∠BAC=∠DAC,∴∠ABD=∠D,∴AB=AD.又∵AC⊥BD,∴BC=CD=6.故答案為:6.,(2)連接EA,若BC=6,則當(dāng)CD=________時(shí),四邊形EBCA是矩形.,17.如圖,AB是以O(shè)為圓心的半圓的直徑,半徑CO⊥AO,點(diǎn)M是AB上的動(dòng)點(diǎn),且不與點(diǎn)A、C、B重合,直線AM交直線OC于點(diǎn)D,連接OM與CM.(1)若半圓的半徑為10.①當(dāng)∠AOM=60時(shí),求DM的長;②當(dāng)AM=12時(shí),求DM的長.,解:(1)①當(dāng)∠AOM=60時(shí),∵OM=OA,∴△AMO是等邊三角形,∴∠A=∠MOA=60,∴∠MOD=30,∠D=30,∴∠MOD=∠D.∴DM=OM=10.,︵,②如圖,過點(diǎn)M作MF⊥OA于點(diǎn)F,設(shè)AF=x,∴OF=10-x.,∵AM=12,OA=OM=10,由勾股定理,知122-x2=102-(10-x)2,∴x=,∴AF=.∵M(jìn)F⊥OA,DO⊥OA,∴MF∥OD,∴,即,∴AD=,∴MD=AD-AM=.,(2)是定值.當(dāng)點(diǎn)M位于AC之間時(shí),連接BC,如圖.∵C是AB的中點(diǎn),∴∠B=45.∵四邊形AMCB是圓內(nèi)接四邊形,∴∠CMD=∠B=45.當(dāng)點(diǎn)M位于BC之間時(shí),連接BC,如備用圖,由圓周角定理可知∠CMD=∠B=45.綜上所述,在點(diǎn)M運(yùn)動(dòng)的過程中,∠CMD的度數(shù)是定值,∠CMD=45.,(2)探究:在點(diǎn)M運(yùn)動(dòng)的過程中,∠CMD的度數(shù)是否為定值?若是,求出該定值;若不是,請說明理由.,︵,︵,︵,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 安徽省2019年中考數(shù)學(xué)總復(fù)習(xí) 第一部分 系統(tǒng)復(fù)習(xí) 成績基石 第六章 第22講 圓的基本性質(zhì)課件 安徽省 2019 年中 數(shù)學(xué) 復(fù)習(xí) 第一 部分 系統(tǒng) 成績 基石 第六 22 基本 性質(zhì) 課件
鏈接地址:http://m.jqnhouse.com/p-11534425.html