《傳感器原理及應(yīng)用技術(shù)課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《傳感器原理及應(yīng)用技術(shù)課件.ppt(47頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第1章 傳感器的特性,1.1 傳感器的組成及分類 1.2 傳感器的基本特性 思考題與習(xí)題 ,1.1 傳感器的組成及分類,1.1.1 傳感器的組成 傳感器的作用主要是感受和響應(yīng)規(guī)定的被測量, 并按一定規(guī)律將其轉(zhuǎn)換成有用輸出, 特別是完成非電量到電量的轉(zhuǎn)換。傳感器的組成, 并無嚴格的規(guī)定。一般說來, 可以把傳感器看作由敏感元件(有時又稱為預(yù)變換器)和變換元件(有時又稱為變換器)兩部分組成, 見圖1.1。,圖1.1 傳感器的一般組成,1. 敏感元件 在具體實現(xiàn)非電量到電量間的變換時, 并非所有的非電量都能利用現(xiàn)有的技術(shù)手段直接變換為電量, 而必須進行預(yù)變換, 即先將待測的非電量變?yōu)橐子谵D(zhuǎn)換成電量的另
2、一種非電量。這種能完成預(yù)變換的器件稱之為敏感元件。 2. 變換器 能將感受到的非電量變換為電量的器件稱為變換器。例如,可以將位移量直接變換為電容、 電阻及電感的電容變換器、 電阻及電感變換器; 能直接把溫度變換為電勢的熱電偶變換器。顯然,變換器是傳感器不可缺少的重要組成部分。,在實際情況中,由于有一些敏感元件直接就可以輸出變換后的電信號,而一些傳感器又不包括敏感元件在內(nèi),故常常無法將敏感元件與變換器嚴格加以區(qū)別。 如果把傳感器看作一個二端口網(wǎng)絡(luò),則其輸入信號主要是被測的物理量(如長度、力)等時,必然還會有一些難以避免的干擾信號(如溫度、電磁信號)等混入。嚴格地說,傳感器的輸出信號可能為上述各種
3、輸入信號的復(fù)雜函數(shù)。就傳感器設(shè)計來說,希望盡可能做到輸出信號僅僅是(或分別是)某一被測信號的確定性單值函數(shù),且最好呈線性關(guān)系。對使用者來說,則要選擇合適的傳感器及相應(yīng)的電路,保證整個測量設(shè)備的輸出信號能惟一、正確地反映某一被測量的大小,而對其它干擾信號能加以抑制或?qū)Σ涣加绊懩茉O(shè)法加以修正。,傳感器可以做得很簡單,也可以做得很復(fù)雜;可以是無源的網(wǎng)絡(luò),也可以是有源的系統(tǒng);可以是帶反饋的閉環(huán)系統(tǒng),也可以是不帶反饋的開環(huán)系統(tǒng);一般情況下只具有變換的功能,但也可能包含變換后信號的處理及傳輸電路甚至包括微處理器CPU。因此,傳感器的組成將隨不同情況而異。 1.1.2 傳感器的分類 傳感器的分類方法很多,國
4、內(nèi)外尚無統(tǒng)一的分類方法。一般按如下幾種方法進行分類。 1. 按輸入被測量分類 這種方法是根據(jù)輸入物理量的性質(zhì)進行分類。表1.1給出了傳感器輸入的基本被測量和由此派生的其它量。,表1.1 傳感器輸入被測量,2. 按工作原理分類 這種分類方法以傳感器的工作原理作為分類依據(jù),見表1.2。,表1.2 傳感器按工作原理的分類,3. 按輸出信號形式分類 這種分類方法是根據(jù)傳感器輸出信號的不同來進行分類,見表1.3。,表1.3 傳感器按輸出信號形式的分類,1.2 傳感器的基本特性,1.2.1 靜態(tài)特性 指當(dāng)被測量的各個值處于穩(wěn)定狀態(tài)(靜態(tài)測量)時,傳感器的輸 出值與輸入值之間關(guān)系的數(shù)學(xué)表達式、曲線或數(shù)表。借
5、助實驗 的方法確定傳感器靜態(tài)特性的過程稱為靜態(tài)校準。校準得到的 靜態(tài)特性稱為校準特性。在校準使用了規(guī)范的程序和儀器后,工 程上常將獲得的校準曲線看作該傳感器的實際特性。 1.線性度 人們?yōu)榱藰硕ê蛿?shù)據(jù)處理的方便, 總是希望傳感器的輸出與輸 入關(guān)系呈線性,并能準確無誤地反映被測量的真值,但實際上這往 往是不可能的。 假設(shè)傳感器沒有遲滯和蠕變效應(yīng),其靜態(tài)特性可用下列多項式 來描述:,式中: x輸入量; y輸出量; a0零位輸出; a1傳感器的靈敏度,常用k表示; a2,a3,an非線性項的待定常數(shù)。 式(1.1)即為傳感器靜態(tài)特性的數(shù)學(xué)模型。該多項式可能有四種情況,如圖1.2所示。,(1.1),圖
6、1.2 傳感器靜態(tài)特性曲線,設(shè)ai0, a00。 1) 理想線性 這種情況見圖1.2(a)。此時 a0=a2=a3= =an=0 于是 y=a1x (1.2) 因為直線上任何點的斜率都相等,所以傳感器的靈敏度為 a1= =k=常數(shù)(1.3),2) 輸出-輸入特性曲線關(guān)于原點對稱 這種情況見圖1.2(b)。此時,在原點附近相當(dāng)范圍內(nèi)曲線基本成線性,式(1.1)只存在奇次項: y=a1x+a3 x3 +a5x5+ (1.4) 3) 輸出-輸入特性曲線不對稱 這時,式(1.1)中非線性項只是偶次項,即 y=a1x+a2x2 +a4x4 + (1.5) 對應(yīng)曲線如圖1.2(c)所示。,4) 普遍情況
7、普遍情況下的表達式就是式(1.1),對應(yīng)的曲線如圖1.2(d)所示。 當(dāng)傳感器特性出現(xiàn)如圖1.2中(b)、(c)、(d)所示的非線性情況時,就必須采取線性化補償措施。 實際運用時,傳感器數(shù)學(xué)模型的建立究竟應(yīng)取幾階多項式,是一個數(shù)據(jù)處理問題。建立數(shù)學(xué)模型的古典方法是分析法。該法太復(fù)雜,有時甚至難以進行。利用校準數(shù)據(jù)來建立數(shù)學(xué)模型,是目前普遍采用的一種方法,它很受人們重視,并得到了發(fā)展。,傳感器的靜態(tài)特性就是在靜態(tài)標準條件下,利用校準數(shù)據(jù)確立的。 靜態(tài)標準條件是指沒有加速度、振動和沖擊(除非這些參數(shù)本身就是被測物理量),環(huán)境溫度一般為室溫205, 相對溫度不大于85%,大氣壓力為0.1 MPa的情
8、況。在這樣的標準工作狀態(tài)下,利用一定等級的校準設(shè)備,對傳感器進行往復(fù)循環(huán)測試,得到的輸出-輸入數(shù)據(jù)一般用表格列出或畫成曲線。 通常,測出的輸出-輸入校準曲線與某一選定擬合直線不吻合的程度,稱之為傳感器的“非線性誤差”,或稱為“線性度”.用相對誤差表示其大小,即傳感器的正、反行程平均校準曲線與擬合直線之間的最大偏差絕對值對滿量程(F.S.)輸出之比(%): |(yL)max L = 100% yF.S,式中: L非線性誤差(線性度); |(yL)max|輸出平均值與擬合直線間的最大偏差絕對值; yF.S 滿量程輸出。F.S.是英文full scale(滿量程)的縮寫。 滿量程輸出用測量上限標稱值
9、yH與測量下限標稱值yL之差的絕對值表示,即 yF.S.=|yH-yL| 顯而易見,非線性誤差的大小是以一定的擬合直線作為基準直線而算出來的?;鶞手本€不同,得出的線性度也不同。傳感器在實際校準時所得的校準數(shù)據(jù),總包括各種誤差在內(nèi)。所以,一般并不要求擬合直線必須通過所有的測試點,而只要找到一條能反映校準數(shù)據(jù)的趨勢同時又使誤差絕對值為最小的直線就行。,需要注意的是,由于采用的擬合直線即理論直線不同,線性度的結(jié)果就有差異。因此,即使在同一條件下對同一傳感器作校準實驗時,得出的非線性誤差L也就不一樣,因而在給出線性度時,必須說明其所依據(jù)的擬合直線。 一般而言,這些擬合直線包括理論直線、端點連線、最小二
10、乘擬合直線、最佳直線等。與之對應(yīng)的有理論線性度、端點連線線性度、最小二乘線性度、獨立線性度等。(1)理論直線。如圖1.3(a)所示,理論直線以傳感器的理論特性直線(圖示對角線)作為擬合直線,它與實際測試值無關(guān)。其優(yōu)點是簡單、方便,但通常(yL)max很大。,圖1.3 幾種不同的擬合直線 (a) 理論直線;(b) 端點連線;,(2)端點連線。如圖1.3(b)所示,它是以傳感器校準曲線兩端點間的連線作為擬合直線。其方程式為 y=b+kx 式中b和k分別為截距和斜率。這種方法方便、直觀,但(yL)max也很大。 (3)最小二乘擬合直線。這種方法按最小二乘原理求取擬合直線,該直線能保證傳感器校準數(shù)據(jù)的
11、殘差平方和最小。如圖1.3(c)所示,若用y=kx+b表示最小二乘擬合直線,式中的系數(shù)b和k可根據(jù)下述分析求得。 設(shè)實際校準測試點有n個,則第i個校準數(shù)據(jù)yi與擬合直線上相應(yīng)值之間的殘差為 i=yi-(b+kxi),圖1.3 幾種不同的擬合直線 (c) 最小二乘擬合直線;(d) “最佳直線”,按最小二乘法原理,應(yīng)使 最小。故由 ,分別對k和b求一階偏導(dǎo)數(shù)并令其等于零,即可求得k和b:,式中:,在獲得了k和b之值以后代入y=kx+b,即可得擬合直線,然后按i=yi-(kx+b)求出殘差的最大值(yL)max,就求出了非線性誤差。 注:最小二乘法的擬合精度很高,但校準曲線相對擬合直線的最大偏差絕對
12、值并不一定最小,最大正、負偏差的絕對值也不一定相等。 (4)“最佳直線”。這種方法以“最佳直線”作為擬合直線,該直線能保證傳感器正、反行程校準曲線對它的正、負偏差相等并且最小,如圖1.3(d)所示。由此所得的線性度稱為“獨立線性度”。顯然,這種方法的擬合精度最高。通常情況下,“最佳直線”只能用圖解法或通過計算機解算來獲得。,2. 重復(fù)性 重復(fù)性表示傳感器在同一工作條件下,被測輸入量按同一方向做全程連續(xù)多次重復(fù)測量時,所得輸出值(所得校準曲線)的一致程度。它是反映傳感器精密度的一個指標。 通常用下式計算重復(fù)性: 式中,YF.S. 為理論滿量程輸出值,其計算式為,(1.7),式中: x1對應(yīng)于測量
13、下限的輸入值; xm對應(yīng)于測量上限的輸入值; k理論特性直線的斜率。 式(1.7)中稱置信系數(shù),通常取2或3。子樣標準偏差S可通過貝塞爾公式或極差公式估算,即 ,而,式中: m測量范圍內(nèi)不考慮重復(fù)測量的測試點數(shù); j=1, 2, , m; n 重復(fù)測量次數(shù); yji的含義是,若輸入值x=xj,則在相同條件下進行n次重復(fù)試驗,獲得n個輸出值yj1yjn; i 重復(fù)測量序數(shù); 算術(shù)平均值。 或 (子樣標準偏差) (1.9),式中: Wn極差,是指某一測量點校準數(shù)據(jù)的最大值與最小值之差; dn極差系數(shù)。 極差系數(shù)可根據(jù)所用數(shù)據(jù)的數(shù)目n由表1.4查得。理論與實踐證明,n不能太大,如n大于12,則計算精
14、度變差,這時要修正dn 。 表1.4 極差系數(shù)與測量次數(shù)的對應(yīng)關(guān)系,3. 遲滯 遲滯表明傳感器在正(輸入量增大)、反(輸入量減?。┬谐唐陂g,輸出-輸入曲線不重合的程度。也就是說,對應(yīng)于同一大小的輸入信號,傳感器正、反行程的輸出信號大小不相等。遲滯是傳感器的一個性能指標,它反映了傳感器的機械部分和結(jié)構(gòu)材料方面不可避免的弱點,如軸承摩擦、灰塵積塞、間隙不適當(dāng),元件磨蝕、碎裂等。遲滯的大小一般由實驗確定:,(1.10),式中: (yH)max輸出值在正、反行程間的最大差值; YF.S.理論滿量程輸出值。 4. 精度(精確度) 精度是反映系統(tǒng)誤差和隨機誤差的綜合誤差指標。 一般用方和根法或代數(shù)和法計算
15、精度。用重復(fù)性、線性度、遲滯三項的方和根或簡單代數(shù)和表示(但方和根用得較多)的精度計算式如下: (1.11a) 或 =L+R+H (1.11b),當(dāng)一個傳感器或傳感器測量系統(tǒng)設(shè)計完成,并進行實際定標以后,人們有時又以工業(yè)上儀表精度的定義給出其精度。它是以測量范圍中最大的絕對誤差(測量值與真實值的差和該儀表的測量范圍之比)來測量,這種比值稱為相對(于滿量程的)百分誤差。例如,某溫度傳感器的刻度為0100,即其測量范圍為100。若在這個測量范圍內(nèi),最大測量誤差不超過0.5,則其相對百分誤差為 =0.5/100=0.5% 去掉上式中相對百分誤差的“%”,稱為儀表的精確度。它劃分成若干等級,如0.1級
16、,0.2級,0.5級,1.0級,等等.例中的溫度傳感器的精度即為0.5級。,5. 靈敏度 靈敏度是傳感器輸出量增量與被測輸入量增量之比,用k來表示。 線性傳感器的靈敏度就是擬合直線的斜率,即 k= (y/x) 非線性傳感器的靈敏度不是常數(shù),其表示式為 靈敏度用輸出、輸入量之比表示。例如,某位移傳感器在位移變化1mm時,輸出電壓變化有300mV,則其靈敏度為300 mVmm。,有些情況下,靈敏度有另一種含義,因為有許多傳感器的輸出電壓與其電源電壓有關(guān),在同樣輸入量情況下,輸出電壓是不同的,這時,靈敏度計算中還要考慮單位電源的作用。如若電源電壓為10 V,上例位移傳感器的靈敏度應(yīng)為30 mV(mm
17、V)。 6. 閾值、分辨力 當(dāng)一個傳感器的輸入從零開始極緩慢地增加時,只有在達到了某一最小值后才測得出輸出變化,這個最小值就稱為傳感器的閾值。在規(guī)定閾值時,最先可測得的那個輸出變化往往難以確定。因此,為了改進閾值數(shù)據(jù)測定的重復(fù)性,最好給輸出變化規(guī)定一個確定的數(shù)值,在該輸出變化值下的相應(yīng)輸入就稱為閾值。,分辨力是指當(dāng)一個傳感器的輸入從非零的任意值緩慢地增加時,只有在超過某一輸入增量后輸出才顯示有變化,這個輸入增量稱為傳感器的分辨力。有時用該值相對滿量程輸入值百分數(shù)表示,則稱為分辨率。 注:閾值說明了傳感器的最小可測出的輸入量。 分辨力說明了傳感器的最小可測出的輸入變量。,7. 時間漂移、零點和靈
18、敏度溫度漂移 漂移量的大小是表征傳感器穩(wěn)定性的重要性能指標。傳感器的漂移有時會致使整個測量或控制系統(tǒng)處于癱瘓。圖1.4示出了零點和靈敏度兩種漂移的疊加。時間漂移通常是指傳感器零位隨時間變化的大小。 國內(nèi)外對漂移指標尚無統(tǒng)一規(guī)定,一般常用的計算公式如下。 時間漂移:,(1.12),圖1.4 零點與靈敏度漂移,式中:y0穩(wěn)定t小時后的傳感器的零位輸出值 (注意,穩(wěn)定時間可規(guī)定為大于t小時的任意值); y0傳感器原先的零位輸出值; yF.S.滿量程輸出值。 零點溫度漂移: 靈敏度溫度漂移:,(1.13),(1.14),1.2.2 動態(tài)特性 1. 時域性能指標 某傳感器的幅頻特性曲線如圖1.5所示,當(dāng)
19、被測信號變化的頻率小于1時,該傳感器的輸出不受被測信號的影響,能正確地反映被測信號。 通常在階躍函數(shù)作用下測定傳感器動態(tài)性能的時域指標。一般認為,階躍輸入對一個傳感器來說是最嚴峻的工作狀態(tài)。如果在階躍函數(shù)的作用下,傳感器能滿足動態(tài)性能指標,那么,在其它函數(shù)作用下,其動態(tài)性能指標也必定會令人滿意。在理想情況下,階躍輸入信號的大小對過渡過程的曲線形狀是沒有影響的。但在實際做過渡過程實驗時,應(yīng)保持階躍輸入信號在傳感器特性曲線的線性范圍內(nèi)。圖1.6所示即為單位階躍作用下傳感器的動態(tài)特性。,圖1.5 幅頻特性曲線,圖1.6 單位階躍作用下傳感器的動態(tài)特性,一個正式的傳感器產(chǎn)品在出廠時要標定它的指標。在標
20、定壓力傳感器的時域性能指標時,常用激波管與瞬態(tài)示波器(或記錄儀)作動態(tài)壓力標定設(shè)備。 通常用下述四個指標來表示傳感器的動態(tài)性能: 時間常數(shù)T: 輸出值上升到穩(wěn)定值y()的63%所需的時間。 上升時間tr: 輸出值從穩(wěn)態(tài)值y()的10%上升到90%所需的時間。 響應(yīng)時間t5、t2: 輸出值達到穩(wěn)態(tài)值的95%或98%所需的時間。, 超調(diào)量:在過渡過程中,若輸出量的最大值y(tp)y(),則響應(yīng)無超調(diào);若y(tp)y(),則有超調(diào),且 輸出量y(t)跟隨輸入量的時間快慢,是標定傳感器動態(tài)性能的重要指標。確定這些性能指標的分析表達式以及技術(shù)指標的計算方法,因不同階次(如一階、二階或高階次)傳感器的動態(tài)
21、數(shù)學(xué)模型而異。具體計算方法可參閱自動控制原理方面的有關(guān)書籍。,2. 頻域性能指標 通常在正弦函數(shù)作用下測定傳感器動態(tài)性能的頻域指標。在標定壓力傳感器的頻域性能指標時,常采用正弦波壓力信號發(fā)生器。如圖1.7中所示,頻域常有如下指標: 通頻帶b: 對數(shù)幅頻特性曲線上幅值衰減3 dB時所對應(yīng)的頻率范圍。 工作頻帶g1或g2:幅值誤差為5%或10%時所對應(yīng)的頻率范圍。 相位誤差: 在工作頻帶范圍內(nèi)相角應(yīng)小于5或10,即為相位誤差的大小。,圖1.7 正弦壓力作用于傳感器的頻域特性,思考題與習(xí)題,1. 傳感器的輸出-輸入校準曲線是在什么條件下得到和建立的? 2. 傳感器的靜態(tài)、動態(tài)特性區(qū)別何在?衡量傳感器的靜態(tài)、動態(tài)特性的主要指標有哪些?簡述其含義。,