2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 刷題首選卷 第一部分 刷考點 考點十四 空間中的平行與垂直關(guān)系 文
《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 刷題首選卷 第一部分 刷考點 考點十四 空間中的平行與垂直關(guān)系 文》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 刷題首選卷 第一部分 刷考點 考點十四 空間中的平行與垂直關(guān)系 文(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、考點十四 空間中的平行與垂直關(guān)系 一、選擇題 1.已知平面α∥平面β,若兩條直線m,n分別在平面α,β內(nèi),則m,n的關(guān)系不可能是( ) A.平行 B.相交 C.異面 D.平行或異面 答案 B 解析 由α∥β知,α∩β=?.又m?α,n?β,故m∩n=?.故選B. 2.設(shè)直線m與平面α相交但不垂直,則下列說法正確的是( ) A.在平面α內(nèi)有且只有一條直線與直線m垂直 B.過直線m有且只有一個平面與平面α垂直 C.與直線m垂直的直線不可能與平面α平行 D.與直線m平行的平面不可能與平面α垂直 答案 B 解析 可以通過觀察正方體ABCD-A1B1C1D1進(jìn)行判斷
2、,取BC1為直線m,平面ABCD為平面α,由AB,CD均與m垂直知,A錯誤;由D1C1與m垂直且與平面α平行知,C錯誤;由平面ADD1A1與m平行且與平面α垂直知,D錯誤.故選B. 3.(2019·東北三省四市一模)已知m,n為兩條不重合直線,α,β為兩個不重合平面,下列條件中,一定能推出α∥β的是( ) A.m∥n,m?α,n?β B.m∥n,m⊥α,n⊥β C.m⊥n,m∥α,n∥β D.m⊥n,m⊥α,n⊥β 答案 B 解析 當(dāng)m∥n時,若m⊥α,可得n⊥α.又n⊥β,可知α∥β,故選B. 4.(2019·湖南長沙一中模擬一)在正方體ABCD-A1B1C1D1中,點O是
3、四邊形ABCD的中心,關(guān)于直線A1O,下列說法正確的是( ) A.A1O∥DC B.A1O⊥BC C.A1O∥平面B1CD1 D.A1O⊥平面ABD 答案 C 解析 顯然A1O與DC是異面直線,故A錯誤;假設(shè)A1O⊥BC,結(jié)合A1A⊥BC可得BC⊥平面A1ACC1,則可得BC⊥AC,顯然不正確,故假設(shè)錯誤,即B錯誤;∵在正方體ABCD-A1B1C1D1中,點O是四邊形ABCD的中心,∴A1D∥B1C,OD∥B1D1,∵A1D∩DO=D,B1D1∩B1C=B1,∴平面A1DO∥平面B1CD1, ∵A1O?平面A1DO,∴A1O∥平面B1CD1,故C正確;又A1A⊥平面AB
4、D,過一點作平面ABD的垂線有且只有一條,則D錯誤,故選C. 5.下列命題中錯誤的是( ) A.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β B.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ D.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β 答案 D 解析 對于D,若平面α⊥平面β,則平面α內(nèi)的直線可能不垂直于平面β,甚至可能平行于平面β,其余選項均是正確的. 6.(2019·河南名校聯(lián)盟2月聯(lián)考)設(shè)點P是正方體ABCD-A1B1C1D1的對角線BD1的中點,平面α過
5、點P,且與直線BD1垂直,平面α∩平面ABCD=m,則m與A1C所成角的余弦值為( ) A. B. C. D. 答案 B 解析 由題意知,點P是正方體ABCD-A1B1C1D1的對角線BD1的中點,平面α過點P,且與直線BD1垂直,平面α∩平面ABCD=m,根據(jù)面面平行的性質(zhì),可得m∥AC,所以直線m與A1C所成的角即為直線AC與直線A1C所成的角,即∠ACA1為直線m與A1C所成的角,在Rt△ACA1中,cos∠ACA1===,即m與A1C所成角的余弦值為,故選B. 7.(2017·全國卷Ⅰ)如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這
6、四個正方體中,直線AB與平面MNQ不平行的是( ) 答案 A 解析 A項,作如圖①所示的輔助線,其中D為BC的中點,則QD∥AB.∵QD∩平面MNQ=Q,∴QD與平面MNQ相交,∴直線AB與平面MNQ相交.B項,作如圖②所示的輔助線,則AB∥CD,CD∥MQ,∴AB∥MQ.又AB?平面MNQ,MQ?平面MNQ,∴AB∥平面MNQ.C項,作如圖③所示的輔助線,則AB∥CD,CD∥MQ, ∴AB∥MQ.又AB?平面MNQ,MQ?平面MNQ, ∴AB∥平面MNQ.D項,作如圖④所示的輔助線,則AB∥CD,CD∥NQ,∴AB∥NQ.又AB?平面MNQ,NQ?平面MNQ,∴AB∥平面MNQ
7、.故選A. 8.如圖,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是( ) A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC 答案 D 解析 因為在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,所以BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,則CD⊥AB,又AD⊥AB,所以AB⊥平面A
8、DC,則平面ABC⊥平面ADC,故選D. 二、填空題 9.已知正方體ABCD-A1B1C1D1的棱長為2,點P是平面AA1D1D的中心,點Q是B1D1上一點,且PQ∥平面AA1B1B,則線段PQ的長為________. 答案 解析 如圖,∵PQ∥平面AA1B1B, PQ?平面AD1B1,AB1=平面AA1B1B∩平面AD1B1, ∴PQ∥AB1, ∵點P是平面AA1D1D的中心, ∴點P是AD1的中點,∴點Q是B1D1的中點,∴PQ=AB1=. 10.(2019·黑龍江大慶一中四模)給出下列四個命題: ①如果平面α外一條直線a與平面α內(nèi)一條直線b平行,那么a∥α;
9、②過空間一定點有且只有一條直線與已知平面垂直; ③如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直; ④若兩個相交平面都垂直于第三個平面,則這兩個平面的交線垂直于第三個平面. 其中真命題的序號為________. 答案 ①②④ 解析 命題①是線面平行的判定定理,正確;命題②因為垂直同一平面的兩條直線平行,所以過空間一定點有且只有一條直線與已知平面垂直,故正確;命題③平面內(nèi)無數(shù)條直線均平行時,不能得出直線與這個平面垂直,故不正確;命題④因為兩個相交平面都垂直于第三個平面,從而交線垂直于第三個平面,故正確.故答案為①②④. 11. 如圖,在正三棱柱ABC-A1B1C
10、1中,已知AB=1,點D在棱BB1上,且BD=1,則AD與平面AA1C1C所成角的正弦值為________. 答案 解析 如圖,取C1A1,CA的中點E,F(xiàn),連接B1E,BF,EF,則B1E⊥平面CAA1C1.過點D作DH∥B1E,則DH⊥平面CAA1C1.連接AH,則∠DAH為AD與平面AA1C1C所成角.DH=B1E=,DA=,所以sin∠DAH==. 12.(2019·全國卷Ⅰ)已知∠ACB=90°,P為平面ABC外一點,PC=2,點P到∠ACB兩邊AC,BC的距離均為,那么P到平面ABC的距離為________. 答案 解析 如圖,過點P作PO⊥平面ABC于O
11、,則PO為P到平面ABC的距離.再過O作OE⊥AC于E,OF⊥BC于F,連接PC,PE,PF,則PE⊥AC,PF⊥BC. 又PE=PF=,所以O(shè)E=OF, 所以CO為∠ACB的平分線, 即∠ACO=45°. 在Rt△PEC中,PC=2,PE=,所以CE=1, 所以O(shè)E=1,所以PO===. 三、解答題 13.(2019·安徽黃山第三次質(zhì)量檢測)如圖,在平行四邊形ABCM中,AB=AC=3,∠ACM=90°,以AC為折痕將△ACM折起,使點M到達(dá)點D的位置,且AB⊥DA. (1)證明:CD⊥平面ABC; (2)Q為線段AD上一點,P為線段BC上一點,且BP=DQ=DA,
12、求三棱錐B-APQ的體積. 解 (1)證明:∵四邊形ABCM是平行四邊形,且∠ACM=90°,∴AC⊥AB,又AD⊥AB, ∴AB⊥平面ACD,∵CD?平面ACD,∴AB⊥CD, 又CD⊥AC,∴CD⊥平面ABC. (2)取AC上一點H,使CH=CA, ∵DQ=DA,連接QH,則QH∥CD, 由(1)可得QH⊥平面ABC, ∵AB=AC=3,∴BC=3,AD=3, ∴BP=DQ=3×=2, ∴QH=CD=×3=1, ∵AC=AB=3,AC⊥AB, ∴△ABC為等腰直角三角形, ∴∠ABP=45°,∴S△PAB=AB·BPsin45°=3, ∴VB-APQ=VQ-APB
13、=S△PAB·QH=1. 14.(2019·全國卷Ⅰ)如圖,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點. (1)證明:MN∥平面C1DE; (2)求點C到平面C1DE的距離. 解 (1)證明:如圖,連接B1C,ME. 因為M,E分別為BB1,BC的中點, 所以ME∥B1C,且ME=B1C. 又因為N為A1D的中點,所以ND=A1D. 由題設(shè)知A1B1綊DC,可得B1C綊A1D, 故ME綊ND,因此四邊形MNDE為平行四邊形, 所以MN∥ED. 又MN?平面C1DE,所以MN∥平
14、面C1DE. (2)解法一:過點C作C1E的垂線,垂足為H. 由已知可得DE⊥BC,DE⊥C1C, 所以DE⊥平面C1CE, 故DE⊥CH.從而CH⊥平面C1DE, 故CH的長即為點C到平面C1DE的距離. 由已知可得CE=1,C1C=4,所以C1E=, 故CH=. 從而點C到平面C1DE的距離為. 解法二:在菱形ABCD中,E為BC的中點, 所以DE⊥BC, 根據(jù)題意有DE=,C1E=, 因為棱柱為直棱柱,所以有DE⊥平面BCC1B1, 所以DE⊥EC1,所以S△DEC1=××, 設(shè)點C到平面C1DE的距離為d, 根據(jù)題意有VC1-CDE=VC-C1DE, 則
15、有××1××4=××××d, 解得d==. 一、選擇題 1.設(shè)直線l與平面α平行,直線m在平面α內(nèi),那么( ) A.直線l不平行于直線m B.直線l與直線m異面 C.直線l與直線m沒有公共點 D.直線l與直線m不垂直 答案 C 解析 ∵直線l與平面α平行,由線面平行的定義可知,直線l與平面α無公共點,又直線m在平面α內(nèi),∴直線l與直線m沒有公共點,故選C. 2.(2019·河北石家莊二模)設(shè)l表示直線,α,β,γ表示不同的平面,則下列命題中正確的是( ) A.若l∥α且α⊥β,則l⊥β B.若γ∥α且γ∥β,則α∥β C.若l∥α且l∥β,則α∥β D.若γ
16、⊥α且γ⊥β,則α∥β 答案 B 解析 在A中,若l∥α且α⊥β,則l⊥β,則l與β可能相交、平行或l?β;在B中,若γ∥α且γ∥β,則α∥β,由面面平行的性質(zhì)可得α∥β;在C中,若l∥α且l∥β,則α∥β,則α與β相交或平行;在D中,若γ⊥α且γ⊥β,則α∥β,則α與β相交或平行,故選B. 3.(2019·安徽江南十校3月綜合素質(zhì)檢測)如圖所示,正方體ABCD-A1B1C1D1中,點E,F(xiàn),G,P,Q分別為棱AB,C1D1,D1A1,D1D,C1C的中點.則下列敘述中正確的是( ) A.直線BQ∥平面EFG B.直線A1B∥平面EFG C.平面APC∥平面EFG D.
17、平面A1BQ∥平面EFG 答案 B 解析 過點E,F(xiàn),G的截面如圖所示(H,I分別為AA1,BC的中點),∵A1B∥HE,A1B?平面EFG,HE?平面EFG,∴A1B∥平面EFG,故選B. 4.設(shè)正三棱錐P-ABC的高為H,且此棱錐的內(nèi)切球的半徑為R,若二面角P-AB-C的正切值為,則=( ) A.5 B.6 C.7 D.8 答案 C 解析 取線段AB的中點D,設(shè)P在底面ABC的射影為O,設(shè)AB=a,則OD=a×=a,∠PDC為二面角P-AB-C的平面角,tan∠PDC=,PD=6OD=a,設(shè)正三棱錐P-ABC的表面積為S, 則R===,∴=7. 5.已知長方體A
18、BCD-A1B1C1D1中,AA1=,AB=4,若在棱AB上存在點P,使得D1P⊥PC,則AD的取值范圍是( )
A.(0,1] B.(0,2] C.(1,] D.[1,4)
答案 B
解析 連接DP,由D1P⊥PC,DD1⊥PC,且D1P,DD1是平面DD1P上兩條相交直線,得PC⊥平面DD1P,PC⊥DP,即點P在以CD為直徑的圓上,又點P在AB上,則AB與圓有公共點,即0 19、形,M,N分別是AD,BE的中點,則MN=( )
A. B.4 C. D.5
答案 A
解析 如圖,取BD的中點P,連接MP,NP,
則MP∥AB,NP∥DE,
MP=AB=1,
NP=DE=2,又∵AC∥GF,
∴AC∥NP,∵∠CAB=60°,
∴∠MPN=120°,
∴MN=
==,故選A.
7.(2019·河北衡水中學(xué)第一次摸底)某幾何體的三視圖如圖所示,其中俯視圖為半圓弧且點E為下底面半圓弧上一點(異于點B,C),則關(guān)于該幾何體的說法正確的是( )
A.BE⊥AC B.DE⊥AE
C.CE⊥平面ABE D.BD⊥平面ACE
答 20、案 C
解析 由三視圖可知,該幾何體是如圖所示的半圓柱,圓柱底面半徑為1,高為2,若BE⊥AC,因為BE⊥AB,AB∩AC=A,所以BE⊥平面ABC,又因為BC?平面ABC,所以BE⊥BC,不成立,所以A不正確;
因為DE2+AE2=22+CE2+22+BE2=12≠AD2,因此∠AED≠90°,即DE與AE不垂直,所以B不正確;因為BC為半圓的直徑,所以BE⊥CE,又因為CE⊥AB,AB∩BE=B,所以CE⊥平面ABE,所以C正確;假設(shè)BD⊥平面ACE,則BD⊥CE,又CE⊥DC,BD∩DC=D,所以CE⊥平面ABCD,所以CE⊥BC,與∠CEB=90°矛盾,所以D不正確.故選C.
21、
8.(2019·安徽泗縣一中最后一模)如圖,已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,F(xiàn)為棱AA1上的點,且滿足A1F∶FA=1∶2,點F,B,E,G,H為過三點B,E,F(xiàn)的平面BMN與正方體ABCD-A1B1C1D1的棱的交點,則下列說法錯誤的是( )
A.HF∥BE
B.三棱錐的體積VB1-BMN=4
C.直線MN與平面A1B1BA的夾角是45°
D.D1G∶G1C=1∶3
答案 C
解析 由于平面ADD1A1∥平面BCC1B1,而平面BMN與這兩個平面分別交于HF和BE,根據(jù)面面平行的性質(zhì)定理可知HF∥BE,故A正確;由于A1F∶FA=1∶2 22、,而E是CC1的中點,故MA1=1,HD1=,D1G=,GC1=,C1N=2,VB1-BMN=VB-MNB1=×·MB1·NB1·BB1=××3×4×2=4,故B正確;對于C,由于B1N⊥平面A1B1BA,所以直線MN與平面A1B1BA所成角為∠NMB1,且tan∠NMB1==≠1,故C錯誤;對于D,根據(jù)前面計算的結(jié)果可知D1G=,GC1=,故D正確,故選C.
二、填空題
9.(2019·北京高考)已知l,m是平面α外的兩條不同直線.給出下列三個論斷:
①l⊥m;②m∥α;③l⊥α.
以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:________.
答案 若m 23、∥α且l⊥α,則l⊥m成立(或若l⊥m,l⊥α,則m∥α)
解析 已知l,m是平面α外的兩條不同直線,由①l⊥m與②m∥α,不能推出③l⊥α,因為l可以與α平行,也可以與α相交不垂直;由①l⊥m與③l⊥α能推出②m∥α;由②m∥α與③l⊥α可以推出①l⊥m.故正確的命題是②③?①或①③?②.
10.已知四邊形ABCD是矩形,AB=4,AD=3.沿AC將△ADC折起到△AD′C,使平面AD′C⊥平面ABC,F(xiàn)是AD′的中點,E是AC上一點,給出下列結(jié)論:
①存在點E,使得EF∥平面BCD′;②存在點E,使得EF⊥平面ABC;③存在點E,使得D′E⊥平面ABC;④存在點E,使得AC⊥平面BD 24、′E.
其中正確的結(jié)論是________.(寫出所有正確結(jié)論的序號)
答案?、佗冖?
解析 對于①,存在AC的中點E,使得EF∥CD′,利用線面平行的判定定理可得EF∥平面BCD′;對于②,過點F作EF⊥AC,垂足為E,利用面面垂直的性質(zhì)定理可得EF⊥平面ABC;對于③,過點D′作D′E⊥AC,垂足為E,利用面面垂直的性質(zhì)定理可得D′E⊥平面ABC;對于④,因為ABCD是矩形,AB=4,AD=3,所以B,D′在AC上的射影不是同一點,所以不存在點E,使得AC⊥平面BD′E.
11.(2019·河南洛陽第三次統(tǒng)考)在底面是邊長為2的正方形的四棱錐P-ABCD中,頂點P在底面的射影H為正方形 25、ABCD的中心,異面直線PB與AD所成角的正切值為2,若四棱錐P-ABCD的內(nèi)切球半徑為r,外接球的半徑為R,則R-r=________.
答案
解析 如圖,E,F(xiàn)分別為AB,CD的中點,由題意,P-ABCD為正四棱錐,底面邊長為2,
∵BC∥AD,∴∠PBC即為PB與AD所成角,可得斜高為2,∴△PEF為正三角形,正四棱錐P-ABCD的內(nèi)切球半徑即為△PEF的內(nèi)切圓半徑,所以×(2)2=×2×r×3,可得r=1,設(shè)O為外接球球心,在Rt△OHA中,R2=()2+(3-R)2,解得R=,
∴R-r=-1=.
12. 如圖,已知點D,E分別是三棱柱ABC-A1B1C1的棱BC,A 26、1B1的中點,給出以下命題:
①BB1∥平面C1DE;
②DE∥平面ACC1A1;
③平面ADE⊥平面BCC1B1;
④VE-ABD=2VE-DCC1.
其中真命題是________.(填上所有真命題的序號)
答案 ②④
解析 因為CC1與平面C1DE相交,且CC1∥BB1,所以BB1也與平面C1DE相交,故①錯誤;取A1C1的中點F,連接EF,CF,由EF∥DC,且EF=DC知四邊形EFCD是平行四邊形,所以ED∥FC,又FC?平面ACC1A1,ED?平面ACC1A1,所以DE∥平面ACC1A1,故②正確;因為題中沒有任何垂直關(guān)系,故③錯誤;設(shè)該三棱柱的高為h,則VE-AB 27、D=S△ABDh=S△ABCh=V三棱柱.取AB的中點G,連接EG,則EG∥平面BCC1B1,所以VE-DCC1=VG-DCC1=VC1-DCG=S△DCGh=×S△ABCh=V三棱柱,所以VE-ABD=2VE-DCC1,故④正確.所以真命題是②④.
三、解答題
13.(2019·山東臨沂三模)如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,∠ABC=,M是PC的中點.
(1)求證:平面PAC⊥平面MBD;
(2)若PB⊥PD,三棱錐P-ABD的體積為,求四棱錐P-ABCD的側(cè)面積.
解 (1)證明:∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD 28、,
又底面ABCD是菱形,∴BD⊥AC,
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
∴BD⊥平面PAC,
又BD?平面MBD,∴平面PAC⊥平面MBD.
(2)設(shè)菱形ABCD的邊長為x,
∵∠ABC=,∴∠BAD=,
在△ABD中,BD2=AD2+AB2-2AD·AB·cos∠BAD
=2x2-2x2=3x2,
∴BD=x,
∵PA⊥平面ABCD,∴PA⊥AD,PA⊥AB,
又AB=AD,PB⊥PD,
∴△PBD為等腰直角三角形,PB=PD=x,
∴PA===x,
又S△ABD=AB·AD·sin∠BAD=·x2·sin=x2,
∴V三棱錐P-A 29、BD=·S△ABD·PA=·x2·x=,∴x=2,∴PA=,PB=PD=,
∵∠ABC=,∴AC=AB=2.
又PA⊥平面ABCD,∴PC=PB=,
∴四棱維P-ABCD的側(cè)面積等于2S△PAB+2S△PBC=2×××2+2×××2=2(+).
14.(2019·陜西西安模擬)如圖所示,四棱錐P-ABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,AB=,BC=1,AD=2,CD=4,E為CD的中點.
(1)求證:AE∥平面PBC;
(2)求三棱錐C-PBE的體積.
解 (1)證明:∵AB=,BC=1,∠ABC=90°,
∴AC=2,∠BCA=60°.
在△ACD 30、中,AD=2,AC=2,CD=4,
∴AC2+AD2=CD2,∴∠CAD=90°,△ACD是直角三角形.
又E為CD的中點,∴AE=CD=CE=2,
∴△ACE是等邊三角形,∴∠CAE=60°,
∴∠CAE=60°=∠BCA,∴BC∥AE.
又AE?平面PBC,BC?平面PBC,
∴AE∥平面PBC.
(2)∵PA⊥底面ABCD,∴PA⊥底面BCE,
∴PA為三棱錐P-BCE的高.
∵∠BCA=60°,∠ACD=60°,∴∠BCE=120°.
又BC=1,CE=2,
∴S△BCE=BC·CE·sin∠BCE=×1×2×=,
∴V三棱錐C-PBE=V三棱錐P-BCE=S△BCE·PA=××2=.
- 16 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中語文作文素材:30篇文學(xué)名著開場白
- 初中語文答題技巧:現(xiàn)代文閱讀-說明文閱讀知識點總結(jié)
- 初中語文作文十大??荚掝}+素材
- 初中語文作文素材:描寫冬天的好詞、好句、好段總結(jié)
- 初中語文必考名著總結(jié)
- 初中語文作文常見主題總結(jié)
- 初中語文考試??济偨Y(jié)
- 初中語文必考50篇古詩文默寫
- 初中語文易錯易混詞總結(jié)
- 初中語文228條文學(xué)常識
- 初中語文作文素材:30組可以用古詩詞當(dāng)作文標(biāo)題
- 初中語文古代文化常識七大類別總結(jié)
- 初中語文作文素材:100個文藝韻味小短句
- 初中語文閱讀理解33套答題公式
- 初中語文228條文學(xué)常識總結(jié)