《2020版高考數(shù)學一輪復習 第七章 不等式、推理與證明 課時規(guī)范練31 二元一次不等式(組)與簡單的線性規(guī)劃問題 文 北師大版》由會員分享,可在線閱讀,更多相關《2020版高考數(shù)學一輪復習 第七章 不等式、推理與證明 課時規(guī)范練31 二元一次不等式(組)與簡單的線性規(guī)劃問題 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時規(guī)范練31 二元一次不等式(組)與簡單的線性規(guī)劃問題
基礎鞏固組
1.若點(m,1)在不等式2x+3y-5>0所表示的平面區(qū)域內(nèi),則m的取值范圍是( )
A.m≥1 B.m≤1 C.m<1 D.m>1
2.(2018安徽六安舒城中學仿真(三),3)若x,y滿足則z=x+2y的最大值為( )
A.8 B.7 C.2 D.1
3.已知x,y滿足約束條件若z=y-ax取得最大值的最優(yōu)解不唯一,則實數(shù)a=( )
A.或-1 B.2或 C.2或1 D.2或-1
4.(2018廣東陽春一中模擬,4)若實數(shù)x,y滿足不等式組則z=x2+y2的取值范圍是( )
A.,2 B.[0
2、,2] C. D.[0,]
5.(2018吉林長春高三質(zhì)監(jiān)(二),6)已知動點M(x,y)滿足線性條件定點N(3,1),則直線MN斜率的最大值為( )
A.1 B.2 C.3 D.4
6.(2018山東臨沂沂水一中三模,11)已知實數(shù)x,y滿足的取值范圍為( )
A.-3, B.-3,
C.-3, D.-
7.(2018寧夏銀川四模,6)已知實數(shù)x,y滿足的取值范圍是( )
A.(0,1) B.(0,1]
C.[1,+∞) D.,+∞
8.(2018江西南昌聯(lián)考,9)已知實數(shù)x,y滿足:若目標函數(shù)z=ax+y(其中a為常數(shù))僅在處取得最大值,則a的取值范圍是(
3、)
A.(-1,1) B.(-1,0) C.(0,1) D.{-1,1}
9.(2018江蘇南通聯(lián)考)已知實數(shù)x,y滿足且(k-1)x-y+k-2≥0恒成立,則實數(shù)k的最小值是 .?
10.(2018福建三明質(zhì)檢,15)若直線ax+y=0將平面區(qū)域Ω=劃分成面積為1∶2的兩部分,則實數(shù)a的值等于 .?
11.(2018云南紅河一模,14)已知則z=2x-y的取值范圍是 .?
12.(2018北京海淀區(qū)二模,13)A,B兩個居民小區(qū)的居委會欲組織本小區(qū)的中學生利用雙休日去市郊的敬老院參加獻愛心活動.兩個校區(qū)每位同學的往返車費及服務老人的人數(shù)如下表:
A小區(qū)
4、
B小區(qū)
往返車費
3元
5元
服務老人的人數(shù)
5人
3人
根據(jù)安排,去敬老院的往返總車費不能超過37元,且B小區(qū)參加獻愛心活動的同學比A小區(qū)的同學至少多1人,則接受服務的老人最多有 人.?
綜合提升組
13.(2018江西南昌二模,6)已知點P(m,n)在不等式組表示的平面區(qū)域內(nèi),則實數(shù)m的取值范圍是( )
A.[-5,5] B.[-5,-5]
C.[-5,1] D.[-5,1]
14.(2018江西南昌測試八,5)已知f(x)=x2+ax+b,0≤f(1)≤1,9≤f(-3)≤12,則z=(a+1)2+(b+1)2的最小值為( )
A. B. C
5、. D.1
15.(2018山西太原一模,7)已知不等式ax-2by≤2在平面區(qū)域{(x,y)||x|≤1且|y|≤1}上恒成立,則動點P(a,b)所形成平面區(qū)域的面積為( )
A.4 B.8 C.16 D.32
16.(2018江西贛州一聯(lián),14)已知平面區(qū)域Ω:夾在兩條斜率為-2的平行直線之間,則這兩條平行直線間的最短距離為 .?
創(chuàng)新應用組
17.(2018河南一模,7)設不等式組表示的平面區(qū)域為D,若圓C:(x+1)2+y2=r2(r>0)不經(jīng)過區(qū)域D上的點,則r的取值范圍為( )
A.(0,)∪(,+∞) B.(,+∞)
C.(0,) D.[]
18.(2
6、018湖北武漢調(diào)研, 10)若x,y滿足|x-1|+2|y+1|≤2,則M=2x2+y2-2x的最小值為( )
A.-2 B. C.4 D.-
課時規(guī)范練31 二元一次不等式(組)與簡單的線性規(guī)劃問題
1.D 由2m+3-5>0,得m>1.
2.B 作出題設約束條件可行域,如圖△ABC內(nèi)部(含邊界),作直線l:x+2y=0,把直線l向上平移,z增加,當l過點B(3,2)時,z=3+2×2=7為最大值.故選B.
3.D 由題中條件畫出可行域如圖中陰影部分所示,可知A(0,2),B(2,0),C(-2,-2),則zA=2,zB=-2a,zC=2a-2,要使目標函數(shù)取得最大值的最
7、優(yōu)解不唯一,只要zA=zB>zC或zA=zC>zB或zB=zC>zA,解得a=-1或a=2.故選D.
4.B
繪制不等式組表示的平面區(qū)域如圖所示,目標函數(shù)表示坐標原點到可行域內(nèi)點的距離的平方,則目標函數(shù)在點(0,0)處取得最小值:zmin=02+02=0,目標函數(shù)在點A(1,1)處取得最大值:zmax=12+12=2,故x2+y2的取值范圍是[0,2].故選B.
5.C 畫出線性條件表示的可行域,由可得M(2,-2),由可行域可知當M取(2,-2)時,直線MN的斜率最大值為=3,故選C.
6.A 先作出不等式組對應的可行域,如圖所示,
解方程組得A,2,表示可行域內(nèi)
8、的點(x,y)到原點的直線的斜率,所以當點在A點時,斜率最大=沒有最小值,無限接近直線3x+y-6=0的斜率-3,所以的取值范圍為-3,.故選A.
7.D 的幾何意義為可行域內(nèi)的點到原點的距離,畫出可行域,根據(jù)幾何圖像中的距離,結合點到直線的距離公式,即可求出范圍.根據(jù)題意作出可行域:
此區(qū)域為開放區(qū)域,所以距離可以無限大,
由圖像可知最近距離為原點到直線x+y-1=0的距離,所以由點到直線距離公式可得:
最短距離d=.
故選D.
8.A 構造二次函數(shù)f(t)=t2-t,由函數(shù)的單調(diào)性可知,f(x)≤f(y),得到自變量離軸越遠函數(shù)值越大,故-y,且0≤y≤,得到可行域為如圖所
9、示,
直線斜率為-a,由圖像可得到-1<-a<1即-1
10、6,2] 由z=2x-y?y=2x-z,則z表示直線y=2x+b在y軸上截距的相反數(shù).如圖,易知當直線過點A時直線在y軸上的截距最小為-2,z取最大值為2;當直線過點B時直線在y軸上的截距最大為6,z取最小值為-6.所以,z=2x-y的取值范圍是[-6,2].
12.35 設A,B兩小區(qū)參加活動同學的人數(shù)分別為x,y,受到服務的老人人數(shù)為z,則z=5x+3y,且作出可行域,如圖平移直線z=5x+3y,由圖可知,當直線z=5x+3y過點M(4,5)時,z最大,∴當x=4,y=5時,z取得最大值為35,即接受服務的老人最多有35人,故答案為35.
13.C 作出約束條件所表示的平面區(qū)域
11、,如圖所示,
由解得A(1,7),且點B(-5,0),
又因為點P(m,n)在不等式組所表示的平面區(qū)域內(nèi),
所以實數(shù)m的取值范圍是[-5,1],故選C.
14.B 因為0≤f(1)≤1,9≤f(-3)≤12,所以作可行域,則z=(a+1)2+(b+1)2,其幾何意義是可行域內(nèi)點到定點A(-1,-1)距離的平方,其最小值為A到直線x+y+1=0距離的平方,即zmin=2=,選B.
15.A 令z=ax-2by.∵不等式ax-2by≤2在平面區(qū)域{(x,y)||x|≤1且|y|≤1}上恒成立,∴函數(shù)z=ax-2by在可行域要求的條件下,zmax=2恒成立,畫出平面區(qū)域{(x,y)
12、||x|≤1且|y|≤1},如圖所示:
當直線ax-2by-z=0過點(1,1)或點(1,-1)或(-1,1)或(-1,-1)時,有:
點P(a,b)形成的圖形是圖中的菱形MNTS.
∴所求的面積S=2××4×1=4,故選A.
16. 畫出可行域如下圖所示,由圖可知,兩平行線最短距離為點A(0,2)到直線2x+y-5=0的距離,即d=.
17.A 作出不等式組表示的平面區(qū)域,得到如圖的△MNP及其內(nèi)部,其中M(1,1),N(2,2),P(1,3).∵圓C:(x+1)2+y2=r2(r>0)表示以C(-1,0)為圓心,半徑為r的圓,∴由圖可得,當半徑滿足rCP時,圓C不經(jīng)過區(qū)域D上的點,∵CM=,CP=,∴當0時,圓C不經(jīng)過區(qū)域D上的點,故選A.
18.D 令t=x,+2|y+1|≤2,作出可行域,如圖所示.
A(,0),B(-,-1),M=t2+y2-t=t-2+y2-表示可行域上的動點到定點,0的距離的平方,然后減去,故其最小值為定點,0到直線AB的距離的平方減去.AB:y=t-,定點,0到直線AB的距離:,
∴M=t2+y2-t=t-2+y2-=-,故選D.
7