高中數(shù)學 階段性檢測 北師大版必修4
《高中數(shù)學 階段性檢測 北師大版必修4》由會員分享,可在線閱讀,更多相關《高中數(shù)學 階段性檢測 北師大版必修4(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
階段性檢測 時間:90分鐘 分值:100分 一、選擇題:本大題共10小題,每小題4分,共40分.在下列各題的四個選項中,只有一個選項是符合題目要求的. 1.cosπ的值為( ) A. B.- C. D.0 答案:A 解析:cosπ=cos(4π-)=cos=. 2.已知角α的終邊經(jīng)過點P(-7a,24a)(a<0),則sinα+cosα等于( ) A. B. C.- D.- 答案:C 解析:求出|OP|,利用三角函數(shù)定義求值. ∵點P坐標為(-7a,24a)(a<0), ∴點P是第四象限角且|OP|=-25a. ∴sinα==-,cosα==, ∴sinα+cosα=-+=-. 3.設M和m分別表示函數(shù)y=cosx-1的最大值和最小值,則M+m等于( ) A. B.- C.- D.-2 答案:D 解析:M=-1,m=--1, ∴M+m=--=-2. 4.函數(shù)y=cos(2x+)的圖像的一條對稱軸方程是( ) A.x=- B.x=- C.x= D.x=π 答案:B 解析:y=cos(2x+)=-sin2x.函數(shù)圖像的對稱軸位置就是函數(shù)取最值的位置,驗證即得. 5.sin2cos3tan4的值( ) A.大于0 B.小于0 C.等于0 D.不確定 答案:B 解析:∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0. 6.函數(shù)y=3tan(-2x)的最小正周期為( ) A. B. C.π D.2π 答案:B 解析:對于正切型函數(shù)T==,故選B. 7.為了得到函數(shù)y=2sin(+)(x∈R)的圖像,只需把函數(shù)y=2sinx(x∈R)的圖像上所有的點( ) A.向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍(縱坐標不變) B.向右平移個單位長度,再把所得各點的橫坐標縮短到原來的倍(縱坐標不變) C.向左平移個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變) D.向右平移個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變) 答案:C 8.已知點(tan,sin(-))是角θ終邊上一點,則tanθ等于( ) A.2 B.- C.- D.-2 答案:C 解析:點(tan,sin(-))可化為點(1,-),則tanθ=-. 9.函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分圖像如下圖所示,則函數(shù)表達式為( ) A.y=-4sin(x+) B.y=4sin(x-) C.y=-4sin(x-) D.y=4sin(x+) 答案:A 解析:先確定A=-4,由x=-2和6時y=0可得T=16,ω=,φ=. 10.已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F(xiàn)={θ|tanθ<sinθ},那么E∩F為區(qū)間為( ) A.(,π) B.(,) C.(π,) D.(,) 答案:A 解析:如圖,由圖像可知集合E={θ|<θ<}, 又因為θ在第一象限時,sinθ<tanθ, θ在第二象限時,sinθ>0>tanθ, θ在第三象限時,tanθ>0>sinθ, θ在第四象限時,sinθ>tanθ(由三角函數(shù)線可知), ∴F={θ|2kπ+<θ<2kπ+π或2kπ+<θ<2kπ+2π,k∈Z}, 故E∩F=(,π),應選A. 二、填空題:本大題共3小題,每小題4分,共12分.把答案填入題中橫線上. 11.若sinα=2cosα,則=________. 答案: 解析:==. 12.函數(shù)y=tan(2x+)的遞增區(qū)間是________. 答案:(-,+)(k∈Z) 解析:由kπ-<2x+<kπ+,得-<x<+(k∈Z). 13.函數(shù)f(x)=1-sin2x+sinx在(,]上的值域是________. 答案:[,] 解析:f(x)=1-sin2x+sinx=-(sinx-)2+.∵<x≤, ∴-≤sinx≤1,則當sinx=時,f(x)max=;當sinx=-時,f(x)max=. 三、解答題:本大題共5小題,共48分,其中第14小題8分,第15~18小題各10分.解答應寫出文字說明、證明過程或演算步驟. 14.求值:sin(-1200)cos1290+cos(-1020)sin(-1050)+tan945. 解:原式=-sin1200cos1290+cos1020(-sin1050)+tan945 =-sin120cos210+cos60sin30+tan225 =(-)2++1=2. 15.已知函數(shù)f(x)=2cos(-). (1)求f(x)的最小正周期T; (2)求f(x)的單調(diào)遞增區(qū)間. 解:(1)由已知f(x)=2cos(-)=2cos(-),則T==4π. (2)當2kπ-π≤-≤2kπ(k∈Z), 即4kπ-≤x≤4kπ+(k∈Z)時,函數(shù)f(x)單調(diào)遞增, ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為{x|4kπ-≤x≤4kπ+(k∈Z)}. 16.已知f(x)=2sin(2x+)+a+1,(a∈R). (1)若x∈[0,]時,f(x)最大值為4,求a的值; (2)在(1)的條件下,求滿足f(x)=1且x∈[-π,π]的x的集合. 解:(1)f(x)=2sin(2x+)+a+1 ∵x∈[0,], ∴2x+∈[,], ∴f(x)在[0,]上的最大值為a+3, 所以a=1. (2)f(x)=1,∴sin(2x+)=-, 即2x+=2kπ-或2x+=2kπ-,此時x=kπ-或x=kπ-, 又因為x∈[-π,π], 所以x∈{-,-,,}. 17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖像如圖所示. (1)求函數(shù)f(x)的解析式; (2)求函數(shù)在區(qū)間[-2,4]上的最大值和最小值以及對應的x的值. 解:(1)由題可知A=,=6-(-2)=8,∴T=16, ∴ω==,則f(x)=sin(x+φ). 又圖像過點(2,),代入函數(shù)表達式可得φ=2kπ+(k∈Z). 又|φ|<,∴φ=,∴f(x)=sin(x+). (2)∵x∈[-2,4],∴x+∈[0,], 當x+=,即x=2時,f(x)max=; 當x+=0,即x=-2時,f(x)min=0. 18.設函數(shù)y=f(x)=sin(2x+φ),-π<φ<0,y=f(x)的圖像的一條對稱軸是直線x=. (1)求φ; (2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間; (3)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖像. 解:(1)因為x=是函數(shù)y=f(x)的圖像的一條對稱軸, 所以sin=1, 所以+φ=kπ+(k∈Z). 因為-π<φ<0,所以φ=-. (2)由(1)知φ=-,因此y=sin. 由題意得2kπ-≤2x-≤2kπ+(k∈Z). 所以kπ+≤x≤kπ+(k∈Z). 即函數(shù)y=sin的單調(diào)遞增區(qū)間為(k∈Z). (3)由y=sin知 x 0 π y - -1 0 1 0 - 故函數(shù)y=f(x)在區(qū)間[0,π]上的圖像如圖所示.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 高中數(shù)學 階段性檢測 北師大版必修4 階段性 檢測 北師大 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-11974744.html