《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題一 三角函數(shù)與解三角形 第1講 三角函數(shù)的圖象與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題一 三角函數(shù)與解三角形 第1講 三角函數(shù)的圖象與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第1講 三角函數(shù)的圖象與性質(zhì)
一、選擇題
1.(2019·高考全國卷Ⅱ)若x1=,x2=是函數(shù)f(x)=sin ωx(ω>0)兩個(gè)相鄰的極值點(diǎn),則ω=( )
A.2 B.
C.1 D.
解析:選A.依題意得函數(shù)f(x)的最小正周期T==2×(-)=π,解得ω=2,選A.
2.(2019·昆明市診斷測試)函數(shù)y=sin圖象的一條對稱軸的方程為( )
A.x= B.x=
C.x= D.x=
解析:選D.由題意,令2x-=+kπ(k∈Z),得對稱軸方程為x=+(k∈Z),當(dāng)k=0時(shí),函數(shù)y=sin圖象的一條對稱軸的方程為x=.故選D.
3.(2019·
2、廣東省七校聯(lián)考)函數(shù)f(x)=tan的單調(diào)遞增區(qū)間是( )
A.,k∈Z
B.,k∈Z
C.,k∈Z
D.,k∈Z
解析:選B.由-+kπ<-<+kπ,k∈Z,得2kπ-
3、x的圖象,可以將函數(shù)y=cos 2x-sin 2x的圖象向右平移個(gè)單位長度,故選B.
5.(2019·石家莊市模擬(一))已知函數(shù)f(x)=2cos(ωx+φ)(ω>0,|φ|<)的部分圖象如圖所示,點(diǎn)A(0,),B,則函數(shù)f(x)圖象的一條對稱軸為( )
A.x=- B.x=-
C.x= D.x=
解析:選D.因?yàn)楹瘮?shù)f(x)=2cos(ωx+φ)的圖象過點(diǎn)A(0,),所以2cos φ=,即cos φ=,所以φ=2kπ±(k∈Z).因?yàn)閨φ|<,所以φ=±,由函數(shù)f(x)的圖象知<0,又ω>0,所以φ<0,所以φ=-,所以f(x)=2cos(ωx-).因?yàn)閒(x)=2cos(ω
4、x-)的圖象過點(diǎn)B,所以cos=0,所以=mπ+(m∈Z),所以ω=6m+4(m∈Z).因?yàn)棣?0,>,所以0<ω<6,所以ω=4,所以f(x)=2cos.因?yàn)閤=時(shí),f(x)=2,所以x=為函數(shù)f(x)圖象的一條對稱軸,故選D.
6.(2019·福州市質(zhì)量檢測)已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<)圖象的相鄰兩條對稱軸之間的距離為,將函數(shù)f(x)的圖象向左平移個(gè)單位長度后,得到函數(shù)g(x)的圖象.若函數(shù)g(x)為偶函數(shù),則函數(shù)f(x)在區(qū)間上的值域是( )
A. B.(-1,1)
C.(0,2] D.(-1,2]
解析:選D.由f(x)圖象的相鄰兩條
5、對稱軸之間的距離為,得T=π,又ω>0,所以=π,解得ω=2.將函數(shù)f(x)的圖象向左平移個(gè)單位長度后,得到函數(shù)g(x)=2sin的圖象.因?yàn)楹瘮?shù)g(x)為偶函數(shù),所以+φ=kπ+,k∈Z,由|φ|<,解得φ=-,所以f(x)=2sin.
因?yàn)?
6、故選C.
法二:逐個(gè)選項(xiàng)代入函數(shù)f(x)進(jìn)行驗(yàn)證,選項(xiàng)D不滿足條件,選項(xiàng)A、B、C滿足條件f(x)在上單調(diào)遞增,所以ω的最大值為2,故選C.
8.(2019·福州市第一學(xué)期抽測)已知函數(shù)f(x)=sin 2x+2sin2x-1在[0,m]上單調(diào)遞增,則m的最大值是( )
A. B.
C. D.π
解析:選C.由題意,得f(x)=sin 2x-cos 2x=sin,由-+2kπ≤2x-≤+2kπ(k∈Z),解得-+kπ≤x≤+kπ(k∈Z),k=0時(shí),-≤x≤,即函數(shù)f(x)在上單調(diào)遞增.因?yàn)楹瘮?shù)f(x)在[0,m]上單調(diào)遞增,所以0
7、·湖南省五市十校聯(lián)考)已知函數(shù)f(x)=sin(2x+φ),若f=f(x),且f(π)>f,則f(x)取最大值時(shí)x的值為( )
A.+kπ,k∈Z B.+kπ,k∈Z
C.+kπ,k∈Z D.-+kπ,k∈Z
解析:選C.由f=f(x)得f(x)的圖象關(guān)于直線x=對稱,即當(dāng)x=時(shí),f(x)取得最值,所以2×+φ=nπ+,n∈Z,φ=nπ+,n∈Z.又f(π)>f ,所以sin(2π+φ)>sin(π+φ),即sin φ>-sin φ,得sin φ>0,所以n∈Z,且n為偶數(shù).不妨取n=0,即φ=,當(dāng)f(x)取最大值時(shí),2x+=2kπ+,k∈Z,解得x=+kπ,k∈Z,故選C.
10.
8、(2019·廣東六校第一次聯(lián)考)已知A是函數(shù)f(x)=sin+cos的最大值,若存在實(shí)數(shù)x1,x2使得對任意實(shí)數(shù)x,總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為( )
A. B.
C. D.
解析:選B.f(x)=sin+cos=sin 2 018x+cos 2 018x+cos 2 018x+sin 2 018x=sin 2 018x+cos 2 018x=2sin,故A=f(x)max=2,f(x)的最小正周期T==.又存在實(shí)數(shù)x1,x2使得對任意實(shí)數(shù)x,總有f(x1)≤f(x)≤f(x2)成立,所以f(x2)=f(x)max,f(x1)=f(x)min,
9、故A|x1-x2|的最小值為A×T=,故選B.
11.(多選)已知函數(shù)f(x)=sin4x-cos4x,則下列說法正確的是( )
A.f(x)的最小正周期為π
B.f(x)的最大值為2
C.f(x)的圖象關(guān)于y軸對稱
D.f(x)在區(qū)間上單調(diào)遞增
解析:選ACD.因?yàn)閒(x)=sin4x-cos4x=sin2x-cos2x=-cos 2x,所以函數(shù)f(x)的最小正周期T=π,f(x)的最大值為1.
因?yàn)閒(-x)=-cos(-2x)=-cos 2x=f(x),所以f(x)為偶函數(shù),其圖象關(guān)于y軸對稱,因?yàn)閥=cos 2x在上單調(diào)遞減,所以f(x)=-cos 2x在上單調(diào)遞增,故
10、選ACD.
12.(多選)已知函數(shù)f(x)=2sin(2x+φ)(0<φ<π),若將函數(shù)f(x)的圖象向右平移個(gè)單位長度后,所得圖象關(guān)于y軸對稱,則下列結(jié)論中正確的是( )
A.φ=
B.是f(x)圖象的一個(gè)對稱中心
C.f(φ)=-2
D.x=-是f(x)圖象的一條對稱軸
解析:選ABD.由題意得,平移后的函數(shù)g(x)=f=2sin的圖象關(guān)于y軸對稱,則-+φ=+kπ,k∈Z,因?yàn)?<φ<π,所以φ=,故A正確;f(x)=2sin,由2x+=kπ,k∈Z,得對稱中心的橫坐標(biāo)為-+,k∈Z,故是f(x)圖象的一個(gè)對稱中心,故B正確;f(φ)=2sin=2sin =2,故C不正確;
11、由2x+=+kπ,k∈Z,得x=-+,k∈Z,所以x=-是f(x)圖象的一條對稱軸,故D正確.
13.(多選)將函數(shù)f(x)的圖象向右平移個(gè)單位長度,再將所得函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,得到函數(shù)g(x)=Asin(ωx+φ)的圖象.已知函數(shù)g(x)的部分圖象如圖所示,則下列關(guān)于函數(shù)f(x)的說法正確的是( )
A.f(x)的最小正周期為π,最大值為2
B.f(x)的圖象關(guān)于點(diǎn)中心對稱
C.f(x)的圖象關(guān)于直線x=對稱
D.f(x)在區(qū)間上單調(diào)遞減
解析:選ACD.由圖可知,A=2,T=4×=,所以ω==3.
又由g=2可得φ=-+2kπ(k∈Z),且|φ|<,
12、所以φ=-.
所以g(x)=2sin,
所以f(x)=2sin.
所以f(x)的最小正周期為π,最大值為2,選項(xiàng)A正確.
對于選項(xiàng)B,令2x+=k′π(k′∈Z),得x=-(k′∈Z),所以函數(shù)f(x)圖象的對稱中心為(k′∈Z),由-=,
得k′=,不符合k′∈Z,B錯(cuò)誤.
對于選項(xiàng)C,令2x+=+kπ(k∈Z),得x=+(k∈Z),所以函數(shù)f(x)圖象的對稱軸為直線x=+(k∈Z),當(dāng)k=0時(shí),x=,故C正確.
當(dāng)x∈[,]時(shí),2x+∈,所以f(x)在區(qū)間上單調(diào)遞減,所以選項(xiàng)D正確.故選ACD.
二、填空題
14.已知函數(shù)f(x)=4cos(ωx+φ)(ω>0,0<φ<π
13、)為奇函數(shù),A(a,0),B(b,0)是其圖象上兩點(diǎn),若|a-b|的最小值是1,則f=________.
解析:因?yàn)楹瘮?shù)f(x)=4cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),所以cos φ=0(0<φ<π),所以φ=,所以f(x)=-4sin ωx,又A(a,0),B(b,0)是其圖象上兩點(diǎn),且|a-b|的最小值是1,所以函數(shù)f(x)的最小正周期為2,所以ω=π,所以f(x)=-4sin πx,所以f=-4sin =-2.
答案:-2
15.(2019·長春市質(zhì)量監(jiān)測(二))定義在[0,π]上的函數(shù)y=sin(ω>0)有零點(diǎn),且值域M?,則ω的取值范圍是________.
解析
14、:由0≤x≤π,得-≤ωx-≤ωπ-,當(dāng)x=0時(shí),y=-.因?yàn)楹瘮?shù)y=sin在[0,π]上有零點(diǎn),所以0≤ωπ-,ω≥.因?yàn)橹涤騇?,所以ωπ-≤π+,ω≤,從而≤ω≤.
答案:
16.(2019·蓉城名校第一次聯(lián)考)已知關(guān)于x的方程2sin2x-sin 2x+m-1=0在上有兩個(gè)不同的實(shí)數(shù)根,則m的取值范圍是________.
解析:因?yàn)?sin2x-sin 2x+m-1=0,
所以1-cos 2x-sin 2x+m-1=0,
所以cos 2x+sin 2x-m=0,
所以2sin=m,即sin=.
方程2sin2x-sin 2x+m-1=0在上有兩個(gè)不同的實(shí)數(shù)根,即y=sin
15、,x∈的圖象與y=的圖象有2個(gè)不同的交點(diǎn).作出y=sin,x∈及y=的圖象如圖所示,則-1<<-,
即-20,x∈R,且f(α)=-,f(β)=.若|α-β|的最小值為,則f=________,函數(shù)f(x)的單調(diào)遞增區(qū)間為________.
解析:函數(shù)f(x)=sin+,ω>0,x∈R,由f(α)=-,f(β)=,且|α-β|的最小值為,得=,即T=3π=,所以ω=.所以f(x)=sin+.則f=sin +=.由-+2kπ≤x-≤+2kπ,k∈Z,得-+3kπ≤x≤π+3kπ,k∈Z,即函數(shù)f(x)的單調(diào)遞增區(qū)間為,k∈Z.
答案: ,k∈Z
- 9 -