《2014屆高三數(shù)學(xué)(理)一輪總復(fù)習(xí):第二篇 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié)函數(shù)的奇偶性與周期性 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《2014屆高三數(shù)學(xué)(理)一輪總復(fù)習(xí):第二篇 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié)函數(shù)的奇偶性與周期性 Word版含解析(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第節(jié) 函數(shù)的奇偶性與周期性
【選題明細(xì)表】
知識(shí)點(diǎn)、方法
題號(hào)
函數(shù)奇偶性的判斷
1
函數(shù)奇偶性的應(yīng)用
2、7、9
函數(shù)周期性及應(yīng)用
2、6、11
函數(shù)性質(zhì)的綜合應(yīng)用
3、4、5、8、10
一、選擇題
1.(2012北京西城區(qū)期末)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是( B )
(A)y=- (B)y=e|x|
(C)y=-x2+3 (D)y=cos x
解析:y=-是奇函數(shù),選項(xiàng)A錯(cuò)誤;y=e|x|是偶函數(shù)且在(0,+∞)上單調(diào)遞增,選項(xiàng)B正確;y=-x2+3是偶函數(shù)且在(0,+∞
2、)上單調(diào)遞減,選項(xiàng)C錯(cuò)誤;y=cos x是偶函數(shù)且在(0,+∞)上有時(shí)遞增,有時(shí)遞減,選項(xiàng)D錯(cuò)誤.故選B.
2.(2012孝感統(tǒng)考)設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f等于( A )
(A)- (B)- (C) (D)
解析:由題意得f=-f=-f=-f=-2××=-.故選A.
3.(2013湘潭模擬)已知定義在R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),且在[0,1)上單調(diào)遞增,記a=f(),b=f(2),c=f(3),則a,b,c的大小關(guān)系為( A )
(A)a>b=c (B)b>a=c
(C)b>c>a (D)a>c>b
解析:
3、依題意得f(x+2)=-f(x+1)=f(x),即函數(shù)f(x)是以2為周期的函數(shù),f(2)=f(0)=0,f(3)=f(-1)=-f(1);又f(3)=-f(2)=0,f(1)=-f(0)=0,又f(x)在[0,1)上是增函數(shù),于是有f()>f(0)=f(2)=f(3),即a>b=c.故選A.
4.(2012長(zhǎng)春調(diào)研)設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(-x)+f(x)=0恒成立.如果實(shí)數(shù)m、n滿足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范圍是( A )
(A)(9,49) (B)(13,49)
(C)(9,25) (D)(3,7)
解
4、析:依題意得f(-x)=-f(x),因此由f(m2-6m+21)+f(n2-8n)<0得f(m2-6m+21)<-f(n2-8n)=f(-n2+8n).
又f(x)是定義在R上的增函數(shù),于是有m2-6m+21<-n2+8n,即(m-3)2+(n-4)2<4.在坐標(biāo)平面mOn內(nèi)該不等式表示的是以點(diǎn)(3,4)為圓心、2為半徑的圓內(nèi)的點(diǎn),m2+n2可視為該平面區(qū)域內(nèi)的點(diǎn)(m,n)與原點(diǎn)間的距離的平方,結(jié)合圖形可知m2+n2的取值范圍是(9,49),選A.
5.(2012安徽省皖北高三大聯(lián)考)已知周期為2的偶函數(shù)f(x)在區(qū)間[0,1]上是增函數(shù),則f(-6.5),f(-1),f(0)的大小關(guān)系是
5、( B )
(A)f(-6.5)
6、 (C)-10 (D)-
解析:由于f(x+3)=-,
所以f(x+6)=f(x),即函數(shù)f(x)的周期等于6,
又因?yàn)楹瘮?shù)f(x)是偶函數(shù),
于是f(107.5)=f(6×17+5.5)
=f(5.5)=f(3+2.5)
=-=-
=-=,
故選B.
二、填空題
7.(2012宣城市一模)已知f(x)=asin x+bx+c(a,b,c∈R),若f(0)=-2,f=1,則f= .?
解析:由題設(shè)f(0)=c=-2,
f=a+b-2=1
所以f=-a-b-2=-5.
答案:-5
8.若f(x)是R上周期為5的奇函數(shù),且滿足f(1)=1,f(2)=2,則f(3
7、)-f(4)= .?
解析:由于函數(shù)f(x)的周期為5,所以f(3)-f(4)=f(-2)-f(-1),又f(x)為R上的奇函數(shù),所以f(-2)-f(-1)=-f(2)+f(1)=-2+1=-1.
答案:-1
9.已知函數(shù)f(x)為奇函數(shù),函數(shù)f(x+1)為偶函數(shù),f(1)=1,則f(3)= .?
解析:法一 根據(jù)條件可得f(3)=f(2+1)=f(-2+1)=f(-1)=-f(1)=-1.
法二 使用特例法,尋求函數(shù)模型,令f(x)=sin x,則f(x+1)=sin(x+)=cos x,滿足以上條件,所以f(3)=sin =-1.
答案:-1
三、解答題
10.(
8、2013樂山市第一次調(diào)研考試)已知函數(shù)f(x)=-log2是奇函數(shù).
(1)求m的值;
(2)請(qǐng)討論它的單調(diào)性,并給予證明.
解:(1)∵f(x)是奇函數(shù),
∴f(-x)+f(x)=0,
即--log2 +-log2 =0,
即log2=0,
則=1,
解得m=1,其中m=-1(舍),
經(jīng)驗(yàn)證當(dāng)m=1時(shí),f(x)=-log2 (x∈(-1,0)∪(0,1))是奇函數(shù).
(2)任取x1,x2∈(0,1),且設(shè)x10,
log2(-1)-log2(-1)
9、>0,
得f(x1)-f(x2)>0,即f(x)在(0,1)內(nèi)單調(diào)遞減;
由于f(x)是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,
所以函數(shù)f(x)在(-1,0)內(nèi)單調(diào)遞減.
11.已知函數(shù)f(x)是定義在R上的奇函數(shù),且它的圖象關(guān)于直線x=1對(duì)稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若f(x)=(0