2012高考數(shù)學(xué) 沖刺必考專題解析 代數(shù)推理問題怎么解

上傳人:zhan****gclb 文檔編號:146662824 上傳時間:2022-08-31 格式:DOC 頁數(shù):9 大小:175.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2012高考數(shù)學(xué) 沖刺必考專題解析 代數(shù)推理問題怎么解_第1頁
第1頁 / 共9頁
2012高考數(shù)學(xué) 沖刺必考專題解析 代數(shù)推理問題怎么解_第2頁
第2頁 / 共9頁
2012高考數(shù)學(xué) 沖刺必考專題解析 代數(shù)推理問題怎么解_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2012高考數(shù)學(xué) 沖刺必考專題解析 代數(shù)推理問題怎么解》由會員分享,可在線閱讀,更多相關(guān)《2012高考數(shù)學(xué) 沖刺必考專題解析 代數(shù)推理問題怎么解(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 代數(shù)推理題怎么解 數(shù)學(xué)是“教會年輕人思考”的科學(xué), 針對代數(shù)推理型問題, 我們不但要尋求它的解法是什么, 還要思考有沒有其它的解法, 更要反思為什么要這樣解, 不這樣解行嗎?我們通過典型的問題, 解析代數(shù)推理題的解題思路, 方法和技巧. 在解題思維的過程中, 既重視通性通法的演練, 又注意特殊技巧的作用, 同時將函數(shù)與方程, 數(shù)形結(jié)合, 分類與討論, 等價與化歸等數(shù)學(xué)思想方法貫穿于整個的解題訓(xùn)練過程當(dāng)中. 例1設(shè)函數(shù),已知,時恒有,求a的取值范圍. 講解: 由 , 從而只要求直線L不在半圓C下方時, 直線L 的y截距的最小值. 當(dāng)直線與半圓相切

2、時,易求得舍去). 故. 本例的求解在于 關(guān)鍵在于構(gòu)造新的函數(shù), 進(jìn)而通過解幾模型進(jìn)行推理解題, 當(dāng)中, 滲透著數(shù)形結(jié)合的數(shù)學(xué)思想方法, 顯示了解題思維轉(zhuǎn)換的靈活性和流暢性. 還須指出的是: 數(shù)形結(jié)合未必一定要畫出圖形, 但圖形早已在你的心中了, 這也許是解題能力的提升, 還請三思而后行. 例2 已知不等式對于大于1的正整數(shù)n恒成立,試確定a的取值范圍. 講解: 構(gòu)造函數(shù),易證(請思考:用什么方法證明呢?)為增函數(shù). ∵n是大于1的 正整數(shù), 對一切大于1的正整數(shù)恒成立,必須, 即 這里的構(gòu)造函數(shù)和例1屬于同類型, 學(xué)習(xí)解題就應(yīng)當(dāng)在解題活動的過程中不斷的逐類旁

3、通, 舉一反三, 總結(jié)一些解題的小結(jié)論. 針對恒成立的問題, 函數(shù)最值解法似乎是一種非常有效的同法, 請?zhí)釤捘愕男〗Y(jié)論. 例3 已知函數(shù)在區(qū)間[-b,1-b]上的最大值為25,求b的值. 講解: 由已知二次函數(shù)配方, 得 時,的最大值為4b2+3=25. 上遞增, 上遞增, . 關(guān)于二次函數(shù)問題是歷年高考的熱門話題, 值得讀者在復(fù)課時重點(diǎn)強(qiáng)化訓(xùn)練. 針對拋物線頂點(diǎn)橫坐標(biāo)在不在區(qū)間[-b,1-b], 自然引出解題形態(tài)的三種情況, 這顯示了分類討論的數(shù)學(xué)思想在解題

4、當(dāng)中的充分運(yùn)用. 該分就分, 該合就合, 這種辨證的統(tǒng)一完全依具體的數(shù)學(xué)問題而定, 需要在解題時靈活把握. 例4已知 的單調(diào)區(qū)間; (2)若 講解: (1) 對 已 知 函 數(shù) 進(jìn) 行 降 次 分 項(xiàng) 變 形 , 得 , (2)首先證明任意 事實(shí)上, 而 . 函 數(shù) 與 不 等 式 證 明 的 綜 合 題 在 高 考 中 常 考 常 新 , 是 既 考 知 識 又 考 能 力 的 好 題 型 , 在 高 考 備 考 中 有 較 高 的 訓(xùn) 練 價 值.. 針對本例的求解, 你能夠想到證明任意采

5、用逆向分析法, 給出你的想法! 例5 已知函數(shù)f(x)=(a>0,a≠1). (1) 證明函數(shù)f(x)的圖象關(guān)于點(diǎn)P()對稱. (2) 令an=,對一切自然數(shù)n,先猜想使an>n2成立的最小自然數(shù)a,并證明之. (3) 求證:∈N). 講解: (1)關(guān)于函數(shù)的圖象關(guān)于定點(diǎn)P對稱, 可采用解幾中的坐標(biāo)證法. 設(shè)M(x,y)是f(x)圖象上任一點(diǎn),則M關(guān)于P()的對稱點(diǎn)為M’(1-x,1-y), ∴M′(1-x,1-y)亦在f(x)的圖象上, 故函數(shù)f(x)的圖象關(guān)于點(diǎn)P()對稱. (2)將f(n)、f(1-n)的表達(dá)式代入an的表達(dá)式,化簡可得an=a

6、n猜a=3, 即3n>n2. 下面用數(shù)學(xué)歸納法證明. 設(shè)n=k(k≥2)時,3k>k2. 那么n=k+1,3k+1>3·3k>3k2 又3k2-(k+1)2=2(k-)2-≥0(k≥2,k∈N) ∴3n>n2. (3)∵3k>k2 ∴klg3>2lgk 令k=1,2,…,n,得n個同向不等式,并相加得: 函數(shù)與數(shù)列綜合型問題在高考中頻頻出現(xiàn),是歷年高考試題中的一道亮麗的風(fēng)景線.針對本例,你能夠猜想出最小自然數(shù)a=3嗎? 試試你的數(shù)學(xué)猜想能力. 例6 已知二次函數(shù),設(shè)方程的兩個實(shí)根為x1和x2. (1)如果,若函數(shù)的對稱軸為x=x0,求證:x0

7、>-1; (2)如果,求b的取值范圍. 講解:(1)設(shè),由得, 即 , 故; (2)由同號. ①若. 又,負(fù)根舍去)代入上式得 ,解得; ②若 即4a-2b+3<0. 同理可求得. 故當(dāng) 對你而言, 本例解題思維的障礙點(diǎn)在哪里, 找找看, 如何排除? 下一次遇到同類問題, 你會很順利的克服嗎? 我們力求做到學(xué)一題會一類, 不斷提高邏輯推理能力. 例7 對于函數(shù),若存在成立,則稱的不動點(diǎn)。如果函數(shù)有且只有兩個不動點(diǎn)0,2,且 (1)求函數(shù)的解析式; (2)已知各項(xiàng)不為零的數(shù)列,求數(shù)列通項(xiàng); (3)如果數(shù)列滿足,求證:當(dāng)時

8、,恒有成立. 講解: 依題意有,化簡為 由違達(dá)定理, 得 解得 代入表達(dá)式,由 得 不止有兩個不動點(diǎn), (2)由題設(shè)得 (*) 且 (**) 由(*)與(**)兩式相減得: 解得(舍去)或,由,若這與矛盾,,即{是以-1為首項(xiàng),-1為公差的等差數(shù)列,; (3)采用反證法,假設(shè)則由(1)知 ,有 ,而當(dāng)這與假設(shè)矛盾,故假設(shè)不成立,. 關(guān)于本例的第(3)題,我們還可給出直接證法,事實(shí)上: 由得<0或 結(jié)論成立; 若,此時從而即數(shù)列{}在時單調(diào)遞減,由,可知上成立.

9、 比較上述兩種證法,你能找出其中的異同嗎? 數(shù)學(xué)解題后需要進(jìn)行必要的反思, 學(xué)會反思才能長進(jìn). 例8 設(shè)a,b為常數(shù),:把平面上任意一點(diǎn) (a,b)映射為函數(shù) (1)證明:不存在兩個不同點(diǎn)對應(yīng)于同一個函數(shù); (2)證明:當(dāng),這里t為常數(shù); (3)對于屬于M的一個固定值,得,在映射F的作用下,M1作為象,求其原象,并說明它是什么圖象. 講解: (1)假設(shè)有兩個不同的點(diǎn)(a,b),(c,d)對應(yīng)同一函數(shù),即與相同, 即 對一切實(shí)數(shù)x均成立. 特別令x=0,得a=c;令,得b=d這與(a,b),(c,d)是兩個不同點(diǎn)矛盾,假設(shè)不成立. 故不存在兩個不同點(diǎn)

10、對應(yīng)同函數(shù). (2)當(dāng)時,可得常數(shù)a0,b0,使 = 由于為常數(shù),設(shè)是常數(shù). 從而. (3)設(shè),由此得 在映射F之下,的原象是(m,n),則M1的原象是 . 消去t得,即在映射F之下,M1的原象是以原點(diǎn)為圓心,為半徑的圓. 本題將集合, 映射, 函數(shù)綜合為一體, 其典型性和新穎性兼顧, 是一道用“活題考死知識”的好題目, 具有很強(qiáng)的訓(xùn)練價值. 例9 已知函數(shù)f(t)滿足對任意實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2. (1)求f(1)的值; (2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t; (3)試

11、求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由. 講解 (1)為求f(1)的值,需令 令. 令. (2)令(※) . 由, , 于是對于一切大于1的正整數(shù)t,恒有f(t)>t. (3)由※及(1)可知. 下面證明當(dāng)整數(shù). (※)得 即……, 將諸不等式相加得 . 綜上,滿足條件的整數(shù)只有t=1,. 本題的求解顯示了對函數(shù)方程f(x+y)=f(x)+f(y)+xy+1中的x、y取特殊值的技巧,這種賦值法在2002年全國高考第(21)題中得到了很好的考查. 例10 已知函數(shù)f(x)在(-1,1)上有定義,且滿足x、y∈(-1,1) 有 . (1)證明:f(x)在(-1,1)上為奇函數(shù); (2)對數(shù)列求; (3)求證 講解 (1)令則 令則 為奇函數(shù). (2), 是以-1為首項(xiàng),2為公比的等比數(shù)列. (3) 而 本例將函數(shù)、方程、數(shù)列、不等式等代數(shù)知識集于一題,是考查分析問題和解決問題能力的范例. 在求解當(dāng)中,化歸出等比(等差)數(shù)列是數(shù)列問題常用的解題方法. 9 用心 愛心 專心

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲