《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 第1講 選擇題技法指導(dǎo) 文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 第1講 選擇題技法指導(dǎo) 文(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1講 選擇題技法指導(dǎo)
縱觀(guān)近幾年的高考題,無(wú)論是全國(guó)卷還是省市自主命題卷,選擇題是高考試題的三大題型之一.除上海卷外,其他高考卷中選擇題的個(gè)數(shù)均在8~12之間,約占總分的27%~40%.該題型的基本特點(diǎn)是:絕大部分選擇題屬于低中檔題,且一般按由易到難的順序排列,主要的數(shù)學(xué)思想和數(shù)學(xué)方法能通過(guò)它得到充分地體現(xiàn)和應(yīng)用,選擇題具有概括性強(qiáng)、知識(shí)覆蓋面廣、小巧靈活及有一定的綜合性和深度等特點(diǎn),且每一題幾乎都有兩種或兩種以上的解法.正是因?yàn)檫x擇題具有上述特點(diǎn),所以該題型能有效地檢測(cè)學(xué)生的思維層次及考查學(xué)生的觀(guān)察、分析、判斷、推理、基本運(yùn)算、信息遷移等能力.選擇題也在嘗試創(chuàng)新,在“形成適當(dāng)梯度”“
2、用學(xué)過(guò)的知識(shí)解決沒(méi)有見(jiàn)過(guò)的問(wèn)題”“活用方法和應(yīng)變能力”“知識(shí)的交會(huì)”等四個(gè)維度上不斷出現(xiàn)新穎題,這些新穎題成為高考試卷中一道亮麗的風(fēng)景線(xiàn).
1.直接法與定義法
直接從題設(shè)條件出發(fā),利用定義、定理、性質(zhì)、公式等知識(shí),通過(guò)變形、推理、運(yùn)算等過(guò)程,直接得到結(jié)果,即“小題大做”,選擇正確答案,這種解法叫直接法.直接法是選擇題最基本的方法,絕大多數(shù)選擇題都適宜用直接法解決.它的一般步驟是:計(jì)算推理、分析比較、對(duì)照選擇.直接法又分定性分析法、定量分析法和定性、定量綜合分析法.
【例1】若△ABC的內(nèi)角A,B,C所對(duì)邊a,b,c滿(mǎn)足(a+b)2-c2=4,且C=60°,則ab的值為( ).
A
3、. B.8-4 C.1 D.
變式訓(xùn)練1 已知=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=( ).
A.1+2i B.1-2i
C.2+i D.2-i
2.?dāng)?shù)形結(jié)合法
根據(jù)題設(shè)條件作出所研究問(wèn)題的曲線(xiàn)或有關(guān)圖形或草圖,借助幾何圖形的直觀(guān)性、形狀、位置、性質(zhì)等圖象特征作出正確的判斷,得出結(jié)論.這種方法通過(guò)“以形助數(shù)”或“以數(shù)助形”,使抽象問(wèn)題直觀(guān)化、復(fù)雜問(wèn)題簡(jiǎn)單化.
【例2】設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=取函數(shù)f(x)=2-|x|.當(dāng)K=時(shí),函數(shù)fK(x)的單調(diào)遞增區(qū)
4、間為( ).
A.(-∞,0) B.(0,+∞)
C.(-∞,-1) D.(1,+∞)
變式訓(xùn)練2 若函數(shù)f(x)=ex+ln x,g(x)=e-x+ln x,h(x)=e-x-ln x的零點(diǎn)依次為a,b,c,則a,b,c的大小依次為( ).
A.a(chǎn)>b>c B.a(chǎn)>c>b
C.c>a>b D.c>b>a
3.特例法與排除法
用符合條件的特例,來(lái)檢驗(yàn)各選擇項(xiàng),排除錯(cuò)誤的,留下正確的一種方法叫特例法(特值法),常用的特例有特殊數(shù)值、特殊函數(shù)、特殊數(shù)列、特殊圖形等.排除法就是根據(jù)高考數(shù)學(xué)選擇題中有且只有一個(gè)答案是正確的這一特點(diǎn),在解題時(shí)
5、,結(jié)合估算、特例、邏輯分析等手段先排除一些肯定是錯(cuò)誤的選項(xiàng),從而縮小選擇范圍確保答案的準(zhǔn)確性,并提高答題速度.
【例3】函數(shù)f(x)=(0≤x≤2π)的值域是( ).
A. B.[-1,0]
C.[-,-1] D.
變式訓(xùn)練3 函數(shù)f(x)=axm(1-x)n在區(qū)間[0,1]上的圖象如圖所示,則m,n的值可能是( ).
A.m=1,n=1 B.m=1,n=2
C.m=2,n=1 D.m=3,n=1
4.估算法
由于選擇題提供了唯一正確的選擇項(xiàng),解答又無(wú)需過(guò)程.因此,有些題目,不必進(jìn)行準(zhǔn)確的計(jì)算,只需對(duì)其數(shù)值特點(diǎn)和取值界限作出適
6、當(dāng)?shù)墓烙?jì),便能作出正確的判斷,這就是估算法.估算法的關(guān)鍵是確定結(jié)果所在的大致范圍,否則“估算”就沒(méi)有意義,估算法往往可以減少運(yùn)算量,但是加強(qiáng)了思維的層次.
【例4】已知sin θ=,cos θ=,則tan=( ).
A. B. C. D.5
變式訓(xùn)練4 若D為不等式組表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到1時(shí),動(dòng)直線(xiàn)x+y=a掃過(guò)D中的那部分區(qū)域的面積為( ).
A. B.1 C. D.2
參考答案
方法例析
【例1】A 解析:由(a+b)2-c2=4,得a2+b2+2ab-c2=4,
由C=60°,得cos C=
7、==.
解得ab=.
【變式訓(xùn)練1】C 解析:本題可用驗(yàn)證法逐一驗(yàn)證,但以直接法最為簡(jiǎn)單.
由=1-ni,得m=(1+i)(1-ni)=(1+n)+(1-n)i,根據(jù)復(fù)數(shù)相等的條件得∴
∴m+ni=2+i,故選C.
【例2】C 解析:當(dāng)K=時(shí),
fK(x)==
即=
的圖象如下圖.
由圖象可知,所求單調(diào)遞增區(qū)間為(-∞,-1).
【變式訓(xùn)練2】D 解析:在同一坐標(biāo)系中作出函數(shù)y=ex,y=e-x,y=-ln x,y=ln x的圖象,則函數(shù)f(x),g(x),h(x)的零點(diǎn)a,b,c分別為函數(shù)y=ex與y=-ln x,y=e-x與y=-ln x,y=e-x與y=ln x圖
8、象交點(diǎn)的橫坐標(biāo).觀(guān)察圖象可知c>b>a,故選D.
【例3】B 解析:令sin x=0,cosx=1,
則f(x)==-1,排除A,D;
令sin x=1,cosx=0,則f(x)==0,排除C,故選B.
【變式訓(xùn)練3】B 解析:若m=1,n=1,則函數(shù)f(x)=ax(1-x)的圖象的對(duì)稱(chēng)軸是x=,與圖象不符,排除A.
在區(qū)間[0,1]上函數(shù)只有一個(gè)極值點(diǎn),排除D.
若m=1,n=2,則f(x)=ax(1-x)2,f′(x)=a(3x2-4x+1).
由f′(x)=a(3x2-4x+1)=0可知x1=,x2=1,結(jié)合圖象可知函數(shù)在區(qū)間內(nèi)遞增,在區(qū)間內(nèi)遞減,即在x=處取得最大值.
由f=a××2=知a存在.
若m=2,n=1,則f(x)=ax2(1-x),f′(x)=a(2x-3x2),是極值點(diǎn),顯然與圖象不符.
【例4】D 解析:因?yàn)閏os2θ+sin2θ=1,則m一定為確定的值,因此sinθ,cos θ的值與m無(wú)關(guān),從而tan也與m無(wú)關(guān),A,B排除.我們可估算tan的大致取值范圍來(lái)排除不正確的答案,<θ<π,<<,所以tan>1,故選D.
【變式訓(xùn)練4】C 解析:如圖知所求區(qū)域的面積是△OAB的面積減去Rt△CDB的面積,所求面積比1大,比S△OAB=×2×2=2小,故選C.