《(安徽專用)2013年高考數(shù)學(xué)總復(fù)習(xí) 第二章第8課時 函數(shù)與方程課時闖關(guān)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(安徽專用)2013年高考數(shù)學(xué)總復(fù)習(xí) 第二章第8課時 函數(shù)與方程課時闖關(guān)(含解析)(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第二章第8課時 函數(shù)與方程 課時闖關(guān)(含答案解析)
一、選擇題
1.(2012·蘭州質(zhì)檢)若函數(shù)f(x)=ax+b的零點為2,那么函數(shù)g(x)=bx2-ax的零點是( )
A.0,2 B.0,
C.0,- D.2,
解析:選C.由已知f(2)=2a+b=0可得b=-2a,則g(x)=-2ax2-ax,令g(x)=0可得x=0或x=-,故g(x)的零點是0或-,應(yīng)選C.
2.(2012·石家莊調(diào)研)函數(shù)y=f(x)在區(qū)間[-2,2]上的圖象是連續(xù)的,且方程f(x)=0在(-2,2)上僅有一個實根0,則f(-1)·f(1)的值( )
A.大于0 B.小于0
2、C.等于0 D.無法確定
解析:選D.由題意,知f(x)在(-1,1)上有零點0,該零點可能是變號零點,也可能是不變號零點,∴f(-1)·f(1)符號不定,如f(x)=x2,f(x)=x.
3.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為( )
x
-1
0
1
2
3
ex
0.37
1
2.72
7.39
20.09
x+2
1
2
3
4
5
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
解析:選C.記f(x)=ex-x-2,由表格可知,f(1)<0,f(2)>0,故原方程一個根所在的區(qū)
3、間為(1,2).所以選C.
4.函數(shù)f(x)=2x-x-的一個零點所在的區(qū)間是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:選B.觀察函數(shù)y=2x和函數(shù)y=x+的圖象可知,函數(shù)f(x)=2x-x-有一個大于零的零點,又f(1)=1-<0,f(2)=2->0,根據(jù)函數(shù)零點的存在性定理知函數(shù)的一個零點在區(qū)間(1,2)上.
5.若函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一個零點,則a的取值范圍是( )
A.(-1,1) B.[1,+∞)
C.(1,+∞) D.(2,+∞)
解析:選C.當(dāng)a=0時,函數(shù)的零點是x=-1;當(dāng)a≠
4、0時,若Δ>0,f(0)·f(1)<0,則a>1;若Δ=0,即a=-,函數(shù)的零點是x=-2,故選C.
二、填空題
6.若函數(shù)f(x)=ax-x-a(a>0且a≠1)有兩個零點,則實數(shù)a的取值范圍是__________.
解析:
設(shè)函數(shù)y=ax(a>0,且a≠1)和函數(shù)y=x+a,則函數(shù)f(x)=ax-x-a(a>0,且a≠1)有兩個零點,就是函數(shù)y=ax(a>0,且a≠1)與函數(shù)y=x+a有兩個交點,由圖象可知當(dāng)01時,因為函數(shù)y=ax(a>1)的圖象過點(0,1),而直線y=x+a所過的點一定在點(0,1)的上方,所以一定有兩
5、個交點.所以實數(shù)a的取值范圍是(1,+∞).
答案:(1,+∞)
7.若f(x)=則函數(shù)g(x)=f(x)-x的零點為________.
解析:即求f(x)=x的根,
∴或
解得x=1+,或x=1.
∴g(x)的零點為x=1+,或x=1.
答案:x=1+,或x=1
8.若函數(shù)f(x)=x2+ax+b的兩個零點是-2和3,則不等式af(-2x)>0的解集是________.
解析:∵f(x)=x2+ax+b的兩個零點是-2,3.
∴-2,3是方程x2+ax+b=0的兩根,
由根與系數(shù)的關(guān)系知,
∴,
∴f(x)=x2-x-6.
∵不等式af(-2x)>0,
即-
6、(4x2+2x-6)>0?2x2+x-3<0,
解集為{x|-<x<1}.
答案:{x|-<x<1}
三、解答題
9.判斷下列函數(shù)在給定區(qū)間上是否存在零點.
(1)f(x)=x3-x-1,x∈[-1,2];
(2)f(x)=log2(x+2)-x,x∈[1,3].
解:(1)f(-1)=-1<0,f(2)=5>0,f(-1)f(2)<0,
故f(x)=x3-x-1在x∈[-1,2]上存在零點.
(2)f(1)=log2(1+2)-1=log23-1>log22-1=0,
f(3)=log2(3+2)-3=log25-3<log28-3=0,
所以f(1)f(3)<0,故f
7、(x)=log2(x+2)-x在x∈[1,3]上存在零點.
10.已知函數(shù)f(x)=x3-x2++.求證:存在x0∈(0,),使f(x0)=x0.
證明:令g(x)=f(x)-x.
∵g(0)=,g()=f()-=-,
∴g(0)·g()<0.
又函數(shù)g(x)在[0,]上連續(xù),
所以存在x0∈(0,),使g(x0)=0.
即f(x0)=x0.
11.是否存在這樣的實數(shù)a,使函數(shù)f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上與x軸恒有一個交點,且只有一個交點?若存在,求出a的范圍;若不存在,說明理由.
解:若實數(shù)a滿足條件,則只需f(-1)·f(3)≤0即可.
f(-1)·f(3)=(1-3a+2+a-1)·(9+9a-6+a-1)=4(1-a)(5a+1)≤0.所以a≤-或a≥1.
檢驗:(1)當(dāng)f(-1)=0時,a=1.
所以f(x)=x2+x.
令f(x)=0,即x2+x=0,
得x=0或x=-1.
方程在[-1,3]上有兩根,不合題意,故a≠1.
(2)當(dāng)f(3)=0時,a=-.
此時f(x)=x2-x-.
令f(x)=0,即x2-x-=0,
解之,得x=-或x=3.
方程在[-1,3]上有兩根,不合題意,
故a≠-.
綜上所述,a<-或a>1.