高中數(shù)學 第三章 數(shù)學歸納法與貝努利不等式 3_2 用數(shù)學歸納法證明不等式貝努利不等式課件 新人教B版選修4-5

上傳人:san****019 文檔編號:16381337 上傳時間:2020-09-30 格式:PPT 頁數(shù):20 大?。?3.37MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學 第三章 數(shù)學歸納法與貝努利不等式 3_2 用數(shù)學歸納法證明不等式貝努利不等式課件 新人教B版選修4-5_第1頁
第1頁 / 共20頁
高中數(shù)學 第三章 數(shù)學歸納法與貝努利不等式 3_2 用數(shù)學歸納法證明不等式貝努利不等式課件 新人教B版選修4-5_第2頁
第2頁 / 共20頁
高中數(shù)學 第三章 數(shù)學歸納法與貝努利不等式 3_2 用數(shù)學歸納法證明不等式貝努利不等式課件 新人教B版選修4-5_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第三章 數(shù)學歸納法與貝努利不等式 3_2 用數(shù)學歸納法證明不等式貝努利不等式課件 新人教B版選修4-5》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第三章 數(shù)學歸納法與貝努利不等式 3_2 用數(shù)學歸納法證明不等式貝努利不等式課件 新人教B版選修4-5(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、3.2用數(shù)學歸納法證明不等式,貝努利不等式,1.會用數(shù)學歸納法證明簡單的不等式. 2.會用數(shù)學歸納法證明貝努利不等式. 3.了解貝努利不等式的應(yīng)用條件.,1.用數(shù)學歸納法證明不等式 在不等關(guān)系的證明中,有多種多樣的方法,其中數(shù)學歸納法是最常用的方法之一,在運用數(shù)學歸納法證不等式時,推導“k+1”成立時,比較法、分析法、綜合法、放縮法等方法常被靈活地應(yīng)用. 【做一做1-1】 欲用數(shù)學歸納法證明:對于足夠大的正整數(shù)n,總有2nn3,n0為驗證的第一個值,則() A.n0=1 B.n0為大于1小于10的某個整數(shù) C.n010 D.n0=2 解析:n=1時,21;n=2時,41 000.故選C. 答案

2、:C,,,,,【做一做1-2】 用數(shù)學歸納法證明“ n N*,n1)”時,由n=k(k1)不等式成立推證n=k+1時,左邊應(yīng)增加的項數(shù)是() A.2k-1B.2k-1 C.2kD.2k+1 解析:增加的項數(shù)為(2k+1-1)-(2k-1)=2k+1-2k=2k. 答案:C,2.用數(shù)學歸納法證明貝努利不等式 (1)定理1(貝努利不等式):設(shè)x-1,且x0,n為大于1的自然數(shù),則(1+x)n1+nx. (2)定理2:設(shè)為有理數(shù),x-1,若01,則(1+x)1+x.當且僅當x=0時等號成立. 名師點撥當指數(shù)推廣到任意實數(shù)且x-1時, 若01,則(1+x)1+x. 當且僅當x=0時等

3、號成立.,,,,,應(yīng)用數(shù)學歸納法證明不等式,從“n=k”到“n=k+1”證明不等式成立的技巧有哪些? 剖析:在用數(shù)學歸納法證明不等式的問題中,從“n=k”到“n=k+1”的過渡,利用歸納假設(shè)是比較困難的一步,它不像用數(shù)學歸納法證明恒等式問題一樣,只需拼湊出所需要的結(jié)構(gòu)來,而證明不等式的第二步中,從“n=k”到“n=k+1”,只用拼湊的方法,有時也行不通,因為對不等式來說,它還涉及“放縮”的問題,它可能需通過“放大”或“縮小”的過程,才能利用上歸納假設(shè),因此,我們可以利用“比較法”“綜合法”“分析法”等來分析從“n=k”到“n=k+1”的變化,從中找到“放縮尺度”,準確地拼湊出所需要的結(jié)構(gòu).,題

4、型一,題型二,題型三,用數(shù)學歸納法證明數(shù)列型不等式,(1)求數(shù)列an的通項公式; (2)求證:對一切正整數(shù)n,不等式a1a2an<2n!恒成立. 分析:由題設(shè)條件知,可用構(gòu)造新數(shù)列的方法求得an;第(2)問的證明,可以等價變形,視為證明新的不等式.,題型一,題型二,題型三,題型一,題型二,題型三,題型一,題型二,題型三,反思利用數(shù)學歸納法證明數(shù)列型不等式的關(guān)鍵是由n=k到n=k+1的變形.為滿足題目的要求,常常要采用“放”與“縮”等手段,但是放縮要有度,這是一個難點,解決這類問題一是要仔細觀察題目的結(jié)構(gòu),二是要靠經(jīng)驗積累.,題型一,題型二,題型三,用數(shù)學歸納法比較大小,分析:先通過n取比較小的

5、值進行歸納猜想,確定證明方向,再用數(shù)學歸納法證明.,題型一,題型二,題型三,當n=1時,21=212=1; 當n=2時,22=4=22; 當n=3時,23=852=25; 當n=6時,26=6462=36. 故猜測當n5(nN*)時,2nn2. 下面用數(shù)學歸納法進行證明: (1)當n=5時,顯然成立. (2)假設(shè)當n=k(k5,且kN*)時,不等式成立, 即2kk2(k5),則當n=k+1時, 2k+1=22k2k2=k2+k2+2k+1-2k-1 =(k+1)2+(k-1)2-2(k+1)2(因為(k-1)22).,題型一,題型二,題型三,反思利用數(shù)學歸納法比較大小,關(guān)鍵是先用不完全歸納法歸

6、納出兩個量的大小關(guān)系,猜測出證明方向,再利用數(shù)學歸納法證明結(jié)論成立.,題型一,題型二,題型三,用數(shù)學歸納法證明探索型不等式,題型一,題型二,題型三,(1)當n=1時,顯然成立. (2)假設(shè)當n=k(kN*,且k1)時,,題型一,題型二,題型三,反思用數(shù)學歸納法解決探索型不等式的思路是:觀察歸納猜想證明,即先通過觀察部分項的特點進行歸納,判斷并猜測出一般結(jié)論,然后用數(shù)學歸納法進行證明.,1 2 3 4,,,,,1下列選項中,不滿足12+23+34++n(n+1)3n2-3n+2的自然數(shù)n是() A.1B.1,2 C.1,2,3D.1,2,3,4 解析:將n=1,2,3,4分別代入驗證即可. 答案:C,1 2 3 4,,,,,答案:C,1 2 3 4,,,,,1 2 3 4,,,,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲