第十二章《全等三角形》全章導(dǎo)學(xué)案.doc
《第十二章《全等三角形》全章導(dǎo)學(xué)案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《第十二章《全等三角形》全章導(dǎo)學(xué)案.doc(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、八年級(jí)上冊(cè) 第十一章 云浮市第二中學(xué) 主備:林建生 審核:何志海 ___________________________________________________________________________________________ 第十二章:全等三角形導(dǎo)學(xué)案 12.1《全等三角形》導(dǎo)學(xué)案 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo): 1.理解全等三角形的概念,能識(shí)別全等三角形的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角。 2.掌握全等三角形的性質(zhì),會(huì)用符號(hào)表示全等三角形及它們的對(duì)應(yīng)元素。 二、學(xué)習(xí)過(guò)程(課本P31—32): 1
2、、自學(xué)課本31—32頁(yè)內(nèi)容,回答下列問(wèn)題: (1)、能夠_____________的兩個(gè)圖形就是全等圖形, 兩個(gè)全等圖形的_______和______完全相同。 (2)、一個(gè)圖形經(jīng)過(guò)______、______、_________后所得的圖形與原圖形 。 (3)、把兩個(gè)全等的三角形重合在一起,重合的頂點(diǎn)叫做 ,重合的邊叫做 ,重合的角叫做 ?!叭取庇谩? ”表示,讀作 。 (4)、如圖所示,△OCA≌△OBD, 對(duì)應(yīng)頂點(diǎn):點(diǎn)___和點(diǎn)___,點(diǎn)___和點(diǎn)___,點(diǎn)___和點(diǎn)___; 對(duì)應(yīng)角有
3、:____和____,_____和_____,_____和_____; 對(duì)應(yīng)邊有:____和____,____和____,_____和_____. (5)、全等三角形的性質(zhì):全等三角形的 相等, ____ 相等。 2、練一練 (1)、如圖,△ABC≌△CDA,AB和CD,BC和DA是對(duì)應(yīng)邊。寫出其他對(duì)應(yīng)邊及對(duì)應(yīng)角。 (2)、如圖,△ABN≌△ACM,∠B和∠C是對(duì)應(yīng)角,AB與AC是對(duì)應(yīng)邊。寫出其他
4、對(duì)應(yīng)邊及對(duì)應(yīng)角。 三、達(dá)標(biāo)體驗(yàn): 1、如圖,△ABC≌△DEC,CA和CD,CB和CE是對(duì)應(yīng)邊.∠ACD和∠BCE相等嗎? 為什么? 2、如圖△EFG≌△NMH,∠F和∠M是對(duì)應(yīng)角.在△EFG中,F(xiàn)G是最長(zhǎng)邊. 在△NMH中,MH是最長(zhǎng)邊.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)寫出其他對(duì)應(yīng)邊及對(duì)應(yīng)角. (2)求線段MN及線段HG的長(zhǎng). 四、能力提升: 練習(xí)冊(cè)P16第6、9題 五、小結(jié)與反饋: 本節(jié)課
5、我學(xué)會(huì) 我的困惑是 12.2.1《三角形全等的判定》(SSS)導(dǎo)學(xué)案 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo): 1、能探索出判定三角形全等的SSS判定定理。 2、會(huì)應(yīng)用判定定理SSS進(jìn)行簡(jiǎn)單的推理判定兩個(gè)三角形全等 3、會(huì)作一個(gè)角等于已知角. 二、學(xué)習(xí)過(guò)程(課本P35—37): 1、全等三角形的性質(zhì)是
6、 2、討論三角形全等的條件(動(dòng)手畫一畫并回答下列問(wèn)題) 任意畫出一個(gè)△ABC,再畫出一個(gè),使△ABC與 滿足部分條件: (1)一組對(duì)應(yīng)邊相等 (2)一組對(duì)應(yīng)角相等 (3) 兩組對(duì)應(yīng)邊相等 (4) 兩組對(duì)應(yīng)角相等 (5) 一組對(duì)應(yīng)邊相等和一組對(duì)應(yīng)角相等 (6) 三組對(duì)應(yīng)邊相等 3、已知一個(gè)三角形的三條邊長(zhǎng)分別為6cm、8cm、10cm.你能畫出這個(gè)三角形嗎?把你畫的三角形剪下與同伴畫的三角形進(jìn)行比較,它們?nèi)葐幔?
7、4、判定定理一:三邊對(duì)應(yīng)相等的兩個(gè)三角形 ,簡(jiǎn)寫為“ ”或“ ”. 用數(shù)學(xué)語(yǔ)言表述: 在△ABC和中, ∵ ∴△ABC≌ ( ) 上面的規(guī)律可以判斷兩個(gè)三角形 . “SSS”是證明三角形全等的一個(gè)依據(jù). 5、探究:如圖,△ABC是一個(gè)鋼架,AB=AC,AD是連結(jié)點(diǎn)A與BC中點(diǎn)D的支架. 求證:△ABD≌△ACD. 證明:∵D是BC ∴ = ∴在△ 和△ 中 AB= BD= AD= ∴△ABD △ACD(
8、 ) 溫馨提示:證明的書寫步驟: ①準(zhǔn)備條件:證全等時(shí)需要用的間接條件要先證好; ②三角形全等書寫三步驟: A、寫出在哪兩個(gè)三角形中, B、擺出三個(gè)條件用大括號(hào)括起來(lái),C、寫出全等結(jié)論。 三、達(dá)標(biāo)體驗(yàn): 1、如圖,OA=OB,AC=BC. 求證:∠AOC=∠BOC. 2、尺規(guī)作圖。 已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB 3、練習(xí)冊(cè)P17第4題 四、能力提升:練習(xí)冊(cè)P18第6、8題 五、小結(jié)與反饋: 本節(jié)課我學(xué)會(huì)
9、 我的困惑是 12.2.2《三角形全等的判定》(SAS)導(dǎo)學(xué)案 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo): 1、經(jīng)歷探索三角形全等條件的過(guò)程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過(guò)程. 2、掌握三角形全等的“SAS”條件,能運(yùn)用“SAS”證明簡(jiǎn)單的三角形全等問(wèn)題 二、學(xué)習(xí)過(guò)程(課本P37—39): 1、思考:(1
10、)怎樣的兩個(gè)三角形是全等三角形?全等三角形的性質(zhì)是什么?三角形全等的判定(一)的內(nèi)容是什么? 2、探究:兩邊和它們的夾角 對(duì)應(yīng)相等的兩個(gè)三角形是否全等? 已知:△ABC 求作:,使,, 試一試:把△剪下來(lái)放到△ABC上,觀察△與△ABC是否能夠完全重合? 3、全等三角形判定(二): 兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形 (可以簡(jiǎn)寫成“ ”或“ ”) 用數(shù)學(xué)語(yǔ)言表述全等三角形判定(二) 在△ABC和中, ∵ ∴△ABC≌ 4、探究:兩邊及其一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形是否全等?
11、通過(guò)畫圖或?qū)嶒?yàn)可以得出: 5探究 三、達(dá)標(biāo)體驗(yàn) 1、如圖,已知OA=OB,應(yīng)填什么條件就得到△AOC≌△BOD (允許添加一個(gè)條件) 2、 四、能力提升:練習(xí)冊(cè)P20第7、8題 五、小結(jié)與反饋: 本節(jié)課我學(xué)會(huì)
12、 我的困惑是 12.2.3《三角形全等的判定》(ASA、AAS)導(dǎo)學(xué)案 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo): 1、掌握三角形全等的“角邊角”“角角邊”條件.能運(yùn)用全等三角形的條件,解決簡(jiǎn)單的推理證明問(wèn)題 2.經(jīng)歷探索三角形全等條件的過(guò)程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過(guò)程. 二、學(xué)習(xí)過(guò)程(課本P39—41): 1、思考 (1)、到目前為止,作為判別兩三角形全等的方法有 種,分
13、別是 (2)、探究一:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形是否全等? 已知:△ABC 求作:△,使=∠B, =∠C,=BC,(不寫作法,保留作圖痕跡) (3)、把△剪下來(lái)放到△ABC上,觀察△與△ABC是否能夠完全重合? (4)、歸納;全等三角形判定(三): 兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形 (可以簡(jiǎn)寫成“ ”或“ ”) 2、探究二。兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩三角形是否全等 (1)如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全
14、等嗎?能利用前面學(xué)過(guò)的判定方法來(lái)證明你的結(jié)論嗎? (2)歸納;由上面的證明可以得出全等三角形判定(四): 兩個(gè)角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形 (可以簡(jiǎn)寫成“ ”或“ ”) 3、合作探究 (1)、例1、如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.求證:AD=AE. 2.已知:點(diǎn)D在AB上,點(diǎn)E在AC上, BE⊥AC, CD⊥AB,AB=AC,求證:BD=CE 三、達(dá)標(biāo)體驗(yàn) 四、能力提升:練習(xí)冊(cè)P21--22第5、9題 五、小結(jié)與反饋:
15、 本節(jié)課我學(xué)會(huì) 我的困惑是 12.2.4《三角形全等的判定》(HL)導(dǎo)學(xué)案 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo): 1、通過(guò)獨(dú)立思考、小組合作、展示質(zhì)疑,體會(huì)探索數(shù)學(xué)結(jié)論的過(guò)程,發(fā)展合情推理能力; 2、理解直角三角形全等的判定方法“HL”,并能靈活選擇方法判定三角形全等; 二、學(xué)習(xí)過(guò)程(
16、課本P41—43): 1、復(fù)習(xí)思考(1)、判定兩個(gè)三角形全等的方法: 、 、 、 (2)、如圖,AB⊥BE于B,DE⊥BE于E, ①若∠A=∠D,AB=DE,則△ABC與△DEF (填“全等”或“不全等” )根據(jù) (用簡(jiǎn)寫法) ②若∠A=∠D,BC=EF,則△ABC與△DEF (填“全等”或“不全等” )根據(jù) (用簡(jiǎn)寫法) ③若AB=DE,BC=EF,則△ABC與△DEF (填“全等”或“不全等” )根據(jù) (用簡(jiǎn)寫
17、法) ④若AB=DE,BC=EF,AC=DF則△ABC與△DEF (填“全等”或“不全等” )根據(jù) (用簡(jiǎn)寫法) 2、如果兩個(gè)直角三角形滿足斜邊和一條直角邊對(duì)應(yīng)相等,這兩個(gè)直角三角形全等嗎? 已知:Rt△ABC 求作:Rt△, 使=90, =AB, =BC 作法: (2) 把△剪下來(lái)放到△ABC上,觀察△與△ABC是否能夠完全重合? (3)歸納;判定兩個(gè)直角三角形全等的一個(gè)方法 斜邊與一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形 (可以簡(jiǎn)寫成“ ”或“ ”) (4)、用數(shù)學(xué)語(yǔ)言表述上面的判定方法
18、: (5)、直角三角形是特殊的三角形,所以不僅有一般三角形判定全等的方法 “ ”、 “ ”、 “ ”、 “ ”、 還有直角三角形特殊的判定方法 “ ” 3、合作探究 :如圖,AC=AD,∠C,∠D是直角,將上述條件標(biāo)注在圖中,你能說(shuō)明BC與BD相等嗎? 三、達(dá)標(biāo)體驗(yàn) 1、如圖,△ABC中,AB=AC,AD是高,則△ADB與△ADC (填“全等”或“不全等” )根據(jù) (用簡(jiǎn)寫法) 2、判斷兩個(gè)直角三角形全等的方法不正確的有( ) A、兩條直角邊對(duì)應(yīng)相等 B、斜邊
19、和一銳角對(duì)應(yīng)相等 C、斜邊和一條直角邊對(duì)應(yīng)相等 D、兩個(gè)銳角對(duì)應(yīng)相等 3、如圖,B、E、F、C在同一直線上,AF⊥BC于F,DE⊥BC于E, AB=DC,BE=CF,你認(rèn)為AB平行于CD嗎?說(shuō)說(shuō)你的理由 答:AB平行于CD 理由:∵ AF⊥BC,DE⊥BC (已知) ∴ ∠AFB=∠DEC= (垂直的定義) ∵BE=CF,∴BF=CE 在Rt△ 和Rt△ 中 ∵ ∴ ≌ ( ) ∴ = (
20、 ) ∴ (內(nèi)錯(cuò)角相等,兩直線平行) 四、能力提升:練習(xí)冊(cè)P23--24第4、6題 五、小結(jié)與反饋: 本節(jié)課我學(xué)會(huì) 我的困惑是 12.3角的平分線的性質(zhì)(1) 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)
21、目標(biāo) 1、經(jīng)歷角的平分線性質(zhì)的發(fā)現(xiàn)過(guò)程,初步掌握角的平分線的性質(zhì)定理. 2、能運(yùn)用角的平分線性質(zhì)定理解決簡(jiǎn)單的幾何問(wèn)題. 二、學(xué)習(xí)過(guò)程(課本P48—50): 1、復(fù)習(xí)思考 (?。?、什么是角的平分線?怎樣畫一個(gè)角的平分線? (2)、如右圖,AB=AD,BC=DC, 沿著A、C畫一條射線AE,AE就是∠BAD的角平分線,你知道為什么嗎 (3)、根據(jù)角平分儀的制作原理,如何用尺規(guī)作角的平分線?自學(xué)課本19頁(yè)后,思考為什么要用大于MN的長(zhǎng)為半徑畫??? (4)、OC是∠AOB的平分線,點(diǎn)P是射線OC上的任意一點(diǎn), 操作測(cè)量:取點(diǎn)P的三個(gè)不同的位置,分別過(guò)點(diǎn)
22、P作PD⊥OA,PE ⊥OB,點(diǎn)D、E為垂足,測(cè)量PD、PE的長(zhǎng).將三次數(shù)據(jù)填入下表:觀察測(cè)量結(jié)果,猜想線段PD與PE的大小關(guān)系,寫出結(jié)論 PD PE 第一次 第二次 第三次 2、命題:角平分線上的點(diǎn)到這個(gè)角的兩邊距離相等. 題設(shè):一個(gè)點(diǎn)在一個(gè)角的平分線上 結(jié)論:這個(gè)點(diǎn)到這個(gè)角的兩邊的距離相等 結(jié)合第4題圖形請(qǐng)你寫出已知和求證,并證明命題的正性 解后思考:證明一個(gè)幾何命題的步驟有那些? 6、用數(shù)學(xué)語(yǔ)言來(lái)表述角的平分線的性質(zhì)定理: 如右上圖,∵OC是∠AOB的平分線,點(diǎn)P是
23、 ∴ 三、達(dá)標(biāo)體驗(yàn) 1、練習(xí)冊(cè)P25 1、2、3 2、如圖所示OC是∠AOB 的平分線,P 是OC上任意一點(diǎn),問(wèn)PE=PD?為什么? O A B E D C P 四、能力提升: 練習(xí)冊(cè)P25--26第6、7題 五、小結(jié)與反饋: 本節(jié)課我學(xué)會(huì)
24、 我的困惑是 12.3角的平分線的性質(zhì)(2) 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo) 1、經(jīng)歷角的平分線性質(zhì)的發(fā)現(xiàn)過(guò)程,初步掌握角的平分線的性質(zhì)定理.. 2、會(huì)敘述角的平分線的性質(zhì)及“到角兩邊距離相等的點(diǎn)在角的平分線上”. 3、能應(yīng)用這兩個(gè)性質(zhì)解決一些簡(jiǎn)單的實(shí)際問(wèn)題. 二、學(xué)習(xí)過(guò)程(課本P48—50): 1、復(fù)習(xí)思考 (1)、畫出三角形三個(gè)內(nèi)角的平分線 你發(fā)現(xiàn)了什么特點(diǎn)嗎?
25、 (2)、如圖,△ABC的角平分線BM,CN相交于點(diǎn)P,求證:點(diǎn)P到三邊AB,BC,CA的距離相等。 2、要在S區(qū)建一個(gè)集貿(mào)市場(chǎng),使它到公路,鐵路 距離相等且離公路,鐵路的交叉處500米,應(yīng)建在何處?(比例尺 1:20 000) 3、合作探究 (1)、比較角平分線的性質(zhì)與判定 (2)、如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE,CD相交于點(diǎn)O,OB=OC,求證∠1=∠2 三、達(dá)標(biāo)體驗(yàn) 1、練習(xí)冊(cè)P25
26、 4、5 2、如圖:在△ABC中,∠C=90,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF; 求證:CF=EB 四、能力提升: 練習(xí)冊(cè)P25--26第8、9題 五、小結(jié)與反饋: 本節(jié)課我學(xué)會(huì) 我的困惑是 第十一章全等三角形
27、復(fù)習(xí)(1、2) 班別:______ 姓名:_____________ 第___小組 一、學(xué)習(xí)目標(biāo): 1.知道第十一章全等三角形知識(shí)結(jié)構(gòu)圖. 2.通過(guò)基本訓(xùn)練,鞏固第十一章所學(xué)的基本內(nèi)容. 3.通過(guò)典型例題的學(xué)習(xí)和綜合運(yùn)用,加深理解第十一章所學(xué)的基本內(nèi)容,發(fā)展能力. 二、學(xué)習(xí)重點(diǎn)和難點(diǎn): 1.重點(diǎn):知識(shí)結(jié)構(gòu)圖和基本訓(xùn)練. 2.難點(diǎn):典型例題和綜合運(yùn)用. 三、歸納總結(jié),完善認(rèn)知 1.總結(jié)本章知識(shí)點(diǎn)及相互聯(lián)系. 兩兩邊一____ 兩邊一對(duì)角 ____________ ____________ 三邊______________ ___邊_____________
28、 兩角一邊對(duì)應(yīng)相等 __________________ 一個(gè)條件 兩個(gè)條件 三個(gè)條件 2.三角形全等 探究 三角形 全等的 條件 四、基本訓(xùn)練,掌握雙基 1.填空 (1)能夠 的兩個(gè)圖形叫做全等形,能夠 的兩個(gè)三角形叫做全等三角形. (2)把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做 ,重合的邊叫做 ,重合的角叫做 . (3)全等三角形的 邊相等,全等三角形的
29、 角相等. (4) 對(duì)應(yīng)相等的兩個(gè)三角形全等(邊邊邊或 ). (5)兩邊和它們的 對(duì)應(yīng)相等的兩個(gè)三角形全等(邊角邊或 ). (6)兩角和它們的 對(duì)應(yīng)相等的兩個(gè)三角形全等(角邊角或 ). (7)兩角和其中一角的 對(duì)應(yīng)相等的兩個(gè)三角形全等(角角邊或 ). (8) 和一條 對(duì)應(yīng)相等的兩個(gè)直角三角形全等(斜邊、直角邊或 ). (9)角的 上的點(diǎn)到角的兩邊的距離相等. 2.如圖,圖中有兩對(duì)
30、三角形全等,填空: (1)△CDO≌ ,其中,CD的對(duì)應(yīng)邊是 , DO的對(duì)應(yīng)邊是 ,OC的對(duì)應(yīng)邊是 ; (2)△ABC≌ ,∠A的對(duì)應(yīng)角是 , ∠B的對(duì)應(yīng)角是 ,∠ACB的對(duì)應(yīng)角是 . 3.判斷對(duì)錯(cuò):對(duì)的畫“√”,錯(cuò)的畫“”. (1)一邊一角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等. ( ) (2)三角對(duì)應(yīng)相等的兩個(gè)三角形一定全等. ( ) (3
31、)兩邊一角對(duì)應(yīng)相等的兩個(gè)三角形一定全等 ( ) (4)兩角一邊對(duì)應(yīng)相等的兩個(gè)三角形一定全等. ( ) (5)三邊對(duì)應(yīng)相等的兩個(gè)三角形一定全等. ( ) (6)兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形一定全等. ( ) (7)斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形不一定全等. ( ) (8)一邊一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形一定全等. (
32、) 4.如圖,AB⊥AC,DC⊥DB,填空: (1)已知AB=DC,利用 可以判定 △ABO≌△DCO; (2)已知AB=DC,∠BAD=∠CDA,利用 可以判△ABD≌△DCA; (3)已知AC=DB,利用 可以判定△ABC≌△DCB; (4)已知AO=DO,利用 可以判定△ABO≌△DCO; (5)已知AB=DC,BD=CA,利用 可以判定△ABD≌△DCA. 5.完成下面的證明過(guò)程: 如圖,OA=OC,OB=OD. 求證:AB∥DC. 證明:在△ABO和△CDO中,
33、 ∴△ABO≌△CDO( ). ∴∠A= . ∴AB∥DC( 相等,兩直線平行). 6.完成下面的證明過(guò)程: 如圖,AB∥DC,AE⊥BD,CF⊥BD,BF=DE. 求證:△ABE≌△CDF. 證明:∵AB∥DC, ∴∠1= . ∵AE⊥BD,CF⊥BD, ∴∠AEB= . ∵BF=DE, ∴BE= . 在△ABE和△CDF中,
34、 ∴△ABE≌△CDF( ). 五、典型題目,加深理解 題1 如圖,AB=AD,BC=DC. 求證:∠B=∠D. 題2 證明:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上. (先結(jié)合圖形理解命題的意思,然后結(jié)合圖形寫出已知和求證,已知、求證及證明過(guò)程) 題3 如圖,CD⊥AB,BE⊥AC,OB=OC. 求證:∠1=∠2. 六、綜合運(yùn)用,發(fā)展能力 7.如圖,OA⊥AC,OB⊥BC,填空: (1)利用“角的平分線
35、上的點(diǎn)到角的兩邊 的距離相等”,已知 = , 可得 = ; (2)利用“角的內(nèi)部到角兩邊距離相等的點(diǎn)在角的平分線上”, 已知 = ,可得 = ; 8.如圖,要在S區(qū)建一個(gè)集貿(mào)市場(chǎng), 使它到公路、鐵路的距離相等,并且離公 路與鐵路交叉處300米.如果圖中1 厘米表示100米,請(qǐng)?jiān)趫D中標(biāo)出集 貿(mào)市場(chǎng)的位置. 9.如圖,CD=CA,∠1=∠2,EC=BC. 求證:DE=AB. 10.如圖,AB=DE,AC=DF
36、,BE=CF. 求證:AB∥DE. 11.如圖,在△ABC中,D是BC的中點(diǎn), DE⊥AB,DF⊥AC,BE=CF. 求證:AD是△ABC的角平分線. (第11題圖) 12.選做題: 如圖,∠ACB=90,AC=BC,BE⊥CE,AD⊥CE. 求證:△ACD≌△CBE. (第12題圖) 20
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功