高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.4 導(dǎo)數(shù)實(shí)際生活中的應(yīng)用課件 蘇教版選修2-2.ppt
《高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.4 導(dǎo)數(shù)實(shí)際生活中的應(yīng)用課件 蘇教版選修2-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.4 導(dǎo)數(shù)實(shí)際生活中的應(yīng)用課件 蘇教版選修2-2.ppt(33頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1.4 導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用,第 1章 導(dǎo)數(shù)及其應(yīng)用,1.了解導(dǎo)數(shù)在解決實(shí)際問題中的作用. 2.掌握利用導(dǎo)數(shù)解決實(shí)際生活中簡(jiǎn)單的優(yōu)化問題. 3.學(xué)會(huì)建立數(shù)學(xué)模型,并會(huì)求解數(shù)學(xué)模型.,,學(xué)習(xí)目標(biāo),,,欄目索引,,,知識(shí)梳理 自主學(xué)習(xí),題型探究 重點(diǎn)突破,當(dāng)堂檢測(cè) 自查自糾,知識(shí)梳理 自主學(xué)習(xí),知識(shí)點(diǎn)一 利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的步驟 1.分析實(shí)際問題中各量之間的關(guān)系,列出實(shí)際問題的數(shù)學(xué)模型,寫出實(shí)際問題中變量之間的函數(shù)關(guān)系y=f(x); 2.求函數(shù)的導(dǎo)數(shù)f′(x),解方程f′(x)=0; 3.比較函數(shù)在區(qū)間端點(diǎn)和在f′(x)=0的點(diǎn)的函數(shù)值的大小,最大(小)者為最大(小)值.,,思考 (1)什么是優(yōu)化問題? 答案 在生活中,人們常常遇到求使經(jīng)營(yíng)利潤(rùn)最大、用料最省、費(fèi)用最少、生產(chǎn)效率最高等問題,這些問題通常稱為優(yōu)化問題. (2)優(yōu)化問題的常見類型有哪些? 答案 費(fèi)用最省問題,利潤(rùn)最大問題,面積、體積最大問題等.,答案,,知識(shí)點(diǎn)二 解決優(yōu)化問題的基本思路,思考 解決生活中優(yōu)化問題應(yīng)注意什么?,答案,返回,答案 (1)當(dāng)問題涉及多個(gè)變量時(shí),應(yīng)根據(jù)題意分析它們的關(guān)系,列出變量間的關(guān)系式; (2)在建立函數(shù)模型的同時(shí),應(yīng)根據(jù)實(shí)際問題確定出函數(shù)的定義域; (3)在實(shí)際問題中,由f′(x)=0常常得到定義域內(nèi)的根只有一個(gè),如果函數(shù)在這點(diǎn)有極大值(極小值),那么不與端點(diǎn)處的函數(shù)值比較,也可以判斷該極值就是最大值(最小值); (4)求實(shí)際問題的最大(小)值時(shí),一定要從問題的實(shí)際意義去考查,不符合實(shí)際意義的應(yīng)舍去,例如,長(zhǎng)度、寬度應(yīng)大于0,銷售價(jià)格為正數(shù)等.,,返回,題型探究 重點(diǎn)突破,,解析答案,題型一 利潤(rùn)最大問題 例1 某商品每件成本9元,售價(jià)30元,每星期賣出432件.如果降低售價(jià),銷售量就會(huì)增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值x(單位:元/件,0≤x≤21)的平方成正比.已知每件商品的售價(jià)降低2元時(shí),一星期多賣出24件. (1)將一個(gè)星期的商品銷售利潤(rùn)表示成關(guān)于x的函數(shù);,解 若每件商品單價(jià)降低x元,則一個(gè)星期多賣的商品數(shù)為kx2件. 由已知條件得k22=24,解得k=6. 若記一個(gè)星期的商品銷售利潤(rùn)為f(x), 則有f(x)=(30-x-9)(432+6x2)=-6x3+126x2-432x+9 072,x∈[0,21].,,解析答案,(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大? 解 對(duì)(1)中函數(shù)求導(dǎo)得f′(x)=-18x2+252x-432=-18(x-2)(x-12). 當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:,∴x=12時(shí),f(x)取得極大值. ∵f(0)=9 072,f(12)=11 664, ∴30-12=18(元),故定價(jià)為每件18元能使一個(gè)星期的商品銷售利潤(rùn)最大.,反思與感悟,,反思與感悟,利潤(rùn)最大問題是生活中常見的一類問題,一般根據(jù)“利潤(rùn)=收入-成本”建立函數(shù)關(guān)系式,再利用導(dǎo)數(shù)求最大值. 解此類問題需注意兩點(diǎn):①價(jià)格要大于或等于成本,否則就會(huì)虧本; ②銷量要大于0,否則不會(huì)獲利.,,解析答案,跟蹤訓(xùn)練1 某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量x噸與每噸產(chǎn)品的價(jià)格p(元/噸)之間的函數(shù)關(guān)系式為p=24 200- x2,且生產(chǎn)x噸產(chǎn)品的成本為R=50 000+200x(元).問:該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤(rùn)達(dá)到最大?最大利潤(rùn)是多少?,解 依題意,知每月生產(chǎn)x噸產(chǎn)品時(shí)的利潤(rùn)為,令f′(x)=0,得x1=200,x2=-200(舍去). ∵在(0,+∞)內(nèi)只有一個(gè)點(diǎn)x=200使f′(x)=0,且x=200是極大值點(diǎn), ∴200就是最大值點(diǎn),且最大值為,∴每月生產(chǎn)200噸產(chǎn)品時(shí),利潤(rùn)達(dá)到最大,最大利潤(rùn)為315萬元.,,解析答案,題型二 面積、容積最值問題 例2 已知一扇窗子的形狀為一個(gè)矩形和一個(gè)半圓相接,其中半圓的直徑為2r,如果窗子的周長(zhǎng)為10,求當(dāng)半徑r取何值時(shí)窗子的面積最大.,解 設(shè)矩形的另一邊長(zhǎng)為x,半圓弧長(zhǎng)為πr,,反思與感悟,,反思與感悟,在解決面積、體積的最值問題時(shí),要正確引入變量,將面積或體積表示為關(guān)于變量的函數(shù),結(jié)合使實(shí)際問題有意義的變量的范圍,利用導(dǎo)數(shù)求函數(shù)的最值.,,解析答案,跟蹤訓(xùn)練2 如圖,將一個(gè)矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過C點(diǎn),|AB|=3 m,|AD|=2 m. (1)要使矩形AMPN的面積大于32 m2,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)? (2)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最???并求出最小面積; (3)若AN的長(zhǎng)度不少于6 m,則當(dāng)AN的長(zhǎng)度是多少時(shí), 矩形AMPN的面積最小?并求出最小面積.,∵x>2,∴3x2-32x+64>0,即(3x-8)(x-8)>0,,,解析答案,,即當(dāng)AN的長(zhǎng)度為4 m時(shí),S矩形AMPN取得最小值24 m2.,解析答案,即當(dāng)AN的長(zhǎng)度為6 m時(shí),S矩形AMPN取得最小值27 m2.,,解析答案,題型三 成本最省問題 例3 甲、乙兩地相距s千米,汽車從甲地勻速行駛到乙地,速度不得超過c千米/時(shí),已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為b(b>0);固定部分為a元. (1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;,,解析答案,(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛? 解 由題意,s、a、b、v均為正數(shù).,所以當(dāng)v=c時(shí),y最小.,綜上可知,為使全程運(yùn)輸成本y最小,,反思與感悟,,反思與感悟,選取合適的量做自變量,并根據(jù)實(shí)際確定其取值范圍,正確列出函數(shù)關(guān)系式,然后利用導(dǎo)數(shù)求最值.其中把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,正確列出函數(shù)關(guān)系式是解題關(guān)鍵.,,解析答案,跟蹤訓(xùn)練3 工廠A到鐵路的垂直距離為20 km,垂足為B,鐵路線上距離B處100 km的地方有一個(gè)原料供應(yīng)站C,現(xiàn)在要從BC段上的D處向工廠修一條公路,使得從原料供應(yīng)站C到工廠A所需的運(yùn)費(fèi)最省,已知每千米的鐵路運(yùn)費(fèi)與公路運(yùn)費(fèi)之比為3∶5,則D點(diǎn)應(yīng)選在何處?,于是從原料供應(yīng)站C途中經(jīng)中轉(zhuǎn)站D到工廠A所需總運(yùn)費(fèi)為,由實(shí)際問題可知,運(yùn)輸費(fèi)用一定有最小值,而此函數(shù)有唯一極值點(diǎn), 故x=15時(shí)取最小值,故D點(diǎn)在距B點(diǎn)15 km處最好.,,例4 某船由甲地逆水行駛到乙地,甲、乙兩地相距s(km),水的流速為常量a(km/h),船在靜水中的最大速度為b(km/h)(b>a),已知船每小時(shí)的燃料費(fèi)用(以元為單位)與船在靜水中的速度的平方成正比,比例系數(shù)為k,則船在靜水中的航行速度為多少時(shí),其全程的燃料費(fèi)用最???,易錯(cuò)易混,因沒有注意問題的實(shí)際意義而出錯(cuò),解析答案,返回,防范措施,,錯(cuò)解 設(shè)船在靜水中的航行速度為x km/h,全程的燃料費(fèi)用為y元,,解析答案,防范措施,令y′=0,得x=2a或x=0(舍),所以f(2a)=4ask, 即當(dāng)x=2a時(shí),ymin=4ask. 故當(dāng)船在靜水中的航行速度為2a km/h時(shí),燃料費(fèi)用最省. 錯(cuò)因分析 這個(gè)實(shí)際問題的定義域?yàn)?a,b],而x=2a為函數(shù)的極值點(diǎn),是否在(a,b]內(nèi)不確定,所以需要分類討論,否則會(huì)出現(xiàn)錯(cuò)誤.,,正解 設(shè)船在靜水中的航行速度為x km/h,全程的燃料費(fèi)用為y元,,解析答案,防范措施,令y′=0,得x=2a或x=0(舍). (1)當(dāng)2a≤b時(shí),若x∈(a,2a),y′<0,f(x)為減函數(shù), 若x∈(2a,b]時(shí),y′>0,f(x)為增函數(shù), 所以當(dāng)x=2a時(shí),ymin=4ask.,,防范措施,當(dāng)x∈(a,b]時(shí),y′<0, 所以f(x)在(a,b]上是減函數(shù),,綜上可知,若b<2a,則當(dāng)船在靜水中的速度為b km/h時(shí),燃料費(fèi)用最省; 若b≥2a,則當(dāng)船在靜水中的速度為2a km/h時(shí),燃料費(fèi)用最省.,,在運(yùn)用導(dǎo)數(shù)解決實(shí)際問題的過程中,正確建立數(shù)學(xué)模型,找到實(shí)際問題中函數(shù)定義域的取值范圍.,,返回,防范措施,,當(dāng)堂檢測(cè),1,2,3,4,解析答案,1.內(nèi)接于半徑為R的半圓的周長(zhǎng)最大的矩形的邊長(zhǎng)為____________.,解析 設(shè)矩形與半圓直徑垂直的一邊的長(zhǎng)為x,,,解析答案,2.要做一個(gè)圓錐形的漏斗,其母線長(zhǎng)為20 cm,要使其體積最大,則高 為________ cm.,1,2,3,4,,3.一房地產(chǎn)公司有50套公寓要出租,當(dāng)月租金定為1 000元時(shí),公寓會(huì)全部租出去,月租金每增加50元,就會(huì)多一套租不出去,而租出去的公寓每月需花費(fèi)100元維修費(fèi),則月租金定為_____元時(shí)可獲得最大收入.,解析 設(shè)x套為沒有租出去的公寓數(shù), 則收入函數(shù)f(x)=(1 000+50x)(50-x)-100(50-x), ∴f′(x)=1 600-100x, ∴當(dāng)x=16時(shí),f(x)取最大值,故把月租金定為1 800元時(shí)收入最大.,1 800,解析答案,1,2,3,4,,解析答案,4.制作容積為256的方底無蓋水箱,它的高為___時(shí)最省材料.,解析 設(shè)底面邊長(zhǎng)為x,高為h,則V(x)=x2h=256,,4,1,2,3,4,,課堂小結(jié),,返回,1.解應(yīng)用題的思路方法:(1)審題:閱讀理解文字表達(dá)的題意,分清條件和結(jié)論,找出問題的主要關(guān)系;(2)建模:將文字語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,利用數(shù)學(xué)知識(shí)建立相應(yīng)的數(shù)學(xué)模型;(3)解模:把數(shù)學(xué)問題化歸為常規(guī)問題,選擇合適的數(shù)學(xué)方法求解;(4)對(duì)結(jié)果進(jìn)行驗(yàn)證評(píng)估,定性定量分析,做出正確的判斷,確定答案. 2.解決最優(yōu)化問題首先要確定變量之間的函數(shù)關(guān)系,建立函數(shù)模型.要熟記常見函數(shù)模型,如二次函數(shù)模型、三次函數(shù)模型、分式函數(shù)模型、冪指對(duì)模型、三角函數(shù)模型等. 3.除了變量之間的函數(shù)關(guān)系式外,實(shí)際問題中的定義域也很關(guān)鍵,一定要結(jié)合實(shí)際問題的意義確定定義域.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.4 導(dǎo)數(shù)實(shí)際生活中的應(yīng)用課件 蘇教版選修2-2 導(dǎo)數(shù) 及其 應(yīng)用 實(shí)際 生活 中的 課件 蘇教版 選修
鏈接地址:http://m.jqnhouse.com/p-2436937.html