2019-2020年高中數(shù)學(xué) 1.4 2導(dǎo)數(shù)及均值不等式在生活中的優(yōu)化問題中的應(yīng)用教案 新人教A版選修2-2.doc
《2019-2020年高中數(shù)學(xué) 1.4 2導(dǎo)數(shù)及均值不等式在生活中的優(yōu)化問題中的應(yīng)用教案 新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 1.4 2導(dǎo)數(shù)及均值不等式在生活中的優(yōu)化問題中的應(yīng)用教案 新人教A版選修2-2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 1.4 2導(dǎo)數(shù)及均值不等式在生活中的優(yōu)化問題中的應(yīng)用教案 新人教A版選修2-2 生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題。導(dǎo)數(shù)是解決最值問題有力的工具之一,我們常用求函數(shù)的導(dǎo)數(shù)來確定最優(yōu)解。但是除此之外,均值不等式在解決此類問題時也有其自身的特點,下面我將通過一些具體的例子來作簡單的說明。 【例1】學(xué)?;虬嗉壟e行活動,通常需要張貼海報進行宣傳。現(xiàn)讓你設(shè)計一張如圖1-1所示的豎向的海報,要求版心面積為128,上、下兩邊各空2,左右兩邊各空1,如何設(shè)計海報的尺寸,才能使四周空白的面積最小? 解:設(shè)版心的高為,則版心的寬為,此時四周空白的面積為 圖1-1 解法一:(導(dǎo)數(shù)法)求函數(shù)的導(dǎo)數(shù)得:; 令,解得:, 于是寬為。 當時,,當時,, 因此,是函數(shù)的極小值點,也是最小值點,所以,當版心高為16,寬為8時,能使四周空白面積最小。 解法二:(均值不等式法)∵ ∴ (利用均值不等式:若,當且僅當時取等號) 當且僅當,即時取等號,此時寬為, 所以,當版心高為16,寬為8時,能使四周空白面積最小。 【例2】以長為10的線段為直徑作半圓,求它的內(nèi)接矩形面積的最大值。 解:如圖2-1所示,設(shè),∴ ∴面積 () A B 圖2-1 解法一:(導(dǎo)數(shù)法)求函數(shù)的導(dǎo)數(shù)得: , 令,解得:(舍去) 當時,,當時,; ∴在時,取得極大值,也是最大值; 因此當時,它的內(nèi)接矩形面積最大,最大值為25。 解法二:(均值不等式法) ,() 當且僅當,即時取等號。 (利用均值不等式:若,當且僅當時取等號) 【例3】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關(guān)于行駛速度(千 米/小時)的函數(shù)解析式可以表示為:(),已知甲乙兩地相距100千米,當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升? 解:當速度為千米/小時,汽車從甲地到乙地行駛了小時,設(shè)耗油量為升。 ∴,() 解法一:(導(dǎo)數(shù)法)求函數(shù)的導(dǎo)數(shù)得: , 令,解得:, 當時,,當時,; ∴在時,取得極小值,也是最小值。 解法二:(均值不等式法) 當且僅當,即時取等號。 (利用均值不等式:若,當且僅當時取等號) 【例4】用長為18m的鋼條圍成一個長方體形狀框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少? 解:設(shè)長方體的寬為m,則長為m,高為(m), 故長方體的體積為:() 解法一:(導(dǎo)數(shù)法)求函數(shù)的導(dǎo)數(shù)得: 令:,解得:(), 當時,,當時,; 故時,取得極大值,并且這個極大值就是最大值, 從而()。 所以長為2m,寬為1m,高為1.5m時,體積最大,最大值為3 解法二:(均值不等式法) , 當且僅當,即時取等號,此時()。 所以長為2m,寬為1m,高為1.5m時,體積最大,最大值為3 通過上述的幾例可以發(fā)現(xiàn),通過求導(dǎo)數(shù)進行求解最值具有普遍性,對很多最值問題都可以求解,但有些題目用導(dǎo)數(shù)知識解題過程較為繁瑣,極值點求出后,極值情況有的還要與區(qū)間斷點值比較;而使用均值不等式進行求解時,過程較為簡練,但均值不等式只能解決最值問題中的一類問題,有其自身的局限性,并且有的還要注意有陷阱的問題。例如:求函數(shù)的最小值時,要是直接使用均值不等式就會出現(xiàn)問題。 , 取等號時,,此時。 用均值不等式解題時,要注意找到能消去自變量的最佳組合,這一點就不好做到,所以新教材改革中淡化了對均值不等式的應(yīng)用,而導(dǎo)數(shù)彌補了均值不等式的不足,其方法思路清晰,條理明確。在解決優(yōu)化問題時,兩種方法各有千秋,如果我們能對兩種方法都有所理解,針對具體問題具體分析,有選擇地運用,就能使思路開闊,方法簡捷,有利于學(xué)生解決問題能力的提高。 電子郵箱:huangyu8023@126- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 1.4 2導(dǎo)數(shù)及均值不等式在生活中的優(yōu)化問題中的應(yīng)用教案 新人教A版選修2-2 2019 2020 年高 數(shù)學(xué) 導(dǎo)數(shù) 均值 不等式 在生活中 優(yōu)化 問題 中的 應(yīng)用 教案
鏈接地址:http://m.jqnhouse.com/p-2553058.html