2019-2020年高中數(shù)學(xué)1.3《空間幾何體的表面積和體積》教案新人教版必修2.doc
《2019-2020年高中數(shù)學(xué)1.3《空間幾何體的表面積和體積》教案新人教版必修2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)1.3《空間幾何體的表面積和體積》教案新人教版必修2.doc(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)1.3《空間幾何體的表面積和體積》教案新人教版必修2 教學(xué)目的:(1)正棱柱正棱臺(tái)正棱錐的概念,圓柱圓錐圓臺(tái)側(cè)面積 (2)用這些公式解決問題 教學(xué)重點(diǎn):正棱錐、正棱柱、正棱臺(tái)的理解,柱錐臺(tái)的側(cè)面積計(jì)算 教學(xué)難點(diǎn):側(cè)面積公式的應(yīng)用 教學(xué)方法: 教學(xué)過程: 一、什么是多面體?多面體的側(cè)面展開圖 二、新授: 1、正棱柱: 正棱錐: 正棱臺(tái): 側(cè)面積公式的推導(dǎo),正棱錐的簡(jiǎn)單性質(zhì) 2、圓柱、圓錐、圓臺(tái)的側(cè)面積公式 它們之間的區(qū)別與聯(lián)系 例1、正四棱錐形冷水塔塔頂,高是,底邊長(zhǎng)為,制造這種塔頂需要多少平方米鐵板? 例2、有一根長(zhǎng)為,底面半徑為的圓柱形鐵管,用一段鐵絲在鐵管纏繞4圈,并使鐵絲兩個(gè)端點(diǎn)落在圓柱的同一母線上的兩端,則鐵絲的最短長(zhǎng)度為多少厘米? 練習(xí):P52 練習(xí) 教學(xué)后記: 空間幾何體的表面積作業(yè) 班級(jí) 姓名 學(xué)號(hào) 得分 一、選擇題 1、正三棱錐的底面邊長(zhǎng)為,高為,則三棱錐的側(cè)面積為 ( ) A、 B、 C、 D、 2、圓錐的軸截面是正三角形,那么它的側(cè)面積是底面積的 ( ) A、 4倍 B、 3倍 C、 倍 D、 2倍 3、將一個(gè)邊長(zhǎng)為的正方體切成27個(gè)全等的小正方體,則表面積增加了( ) A、 B、 C、 D、 4、棱錐的一個(gè)平行底面的截面把棱錐的高分為(從上到下)那么截面把棱錐的側(cè)面分成兩部分的面積之比等于 ( ) A、 B、 C、 D、 5、圓臺(tái)的高是3,一個(gè)底面半徑是另一個(gè)底面半徑的2倍,母線與下底面所成的角為,則這個(gè)圓臺(tái)的側(cè)面積是 ( ) A、 B、 C、 D、 二、填空題 6、用半徑為的半圓形鐵皮卷成一個(gè)圓錐筒,這個(gè)圓錐筒的高為 7、正三棱臺(tái)的兩個(gè)底面邊分別等于和,側(cè)棱長(zhǎng)為,則它的側(cè)面積為 8、邊長(zhǎng)為的正方形ABCD是圓柱的軸截面,從A到C繞圓柱側(cè)面的最短路程為 三、解答題 9、正四棱臺(tái)的高為,兩底面邊長(zhǎng)之差為,全面積為,求底面邊長(zhǎng)。 10、正方體的8個(gè)頂點(diǎn)中,有4個(gè)頂點(diǎn)構(gòu)成一個(gè)側(cè)面是等邊三角形的正棱錐的頂點(diǎn),求正三棱錐與正方體的全面積之比。 空間幾何體的體積(1) 教學(xué)目的:柱錐臺(tái)的體積計(jì)算公式,能運(yùn)用公式求解體積 教學(xué)重點(diǎn):柱錐臺(tái)的體積計(jì)算公式及其應(yīng)用 教學(xué)難點(diǎn):運(yùn)用公式解決有關(guān)體積計(jì)算問題 教學(xué)方法: 教學(xué)過程: 一、長(zhǎng)方體、正方體的體積公式 祖暅原理來說明柱體的體積 錐體的體積: 臺(tái)體的體積: 二、數(shù)學(xué)運(yùn)用: 例1、有一堆相同規(guī)格的六角螺帽毛坯,共重,已知底面是正六邊形邊長(zhǎng)為,高為內(nèi)孔直徑是,那么約有毛坯多少個(gè)?(鐵的比重為) 例2、一個(gè)幾何體的三視圖如圖所示,畫出它的直觀圖并求其體積。 1 1 1 1 例3、平行六面體相交于一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別是,三條棱的每?jī)蓷l的夾角是,求它的體積。 D C B A E P 例4、三棱錐P—ABC中,PABC,PA=PB=,EDPA,EDBC,ED,求三棱錐P—ABC的體積。 課堂小結(jié): 教學(xué)后記: 空間幾何體的體積(1)作業(yè) 班組 姓名 學(xué)號(hào) 得分 一、選擇題 1、過圓錐高的中點(diǎn)的截面且與底面平行把圓錐分成兩部分體積之比為 ( ) A、 B、 C、 D、 2、正四棱柱的底面積為P,過相對(duì)側(cè)棱截面面積為,則這體積是 ( ) A、 B、 C、 D、 3、在棱長(zhǎng)為4的正方體ABCD—A1B1C1D1中,P是A1B1上一點(diǎn),且PB1 A1B1則多面體P—BCC1B1的體積為 ( ) A、 B、 C、4 D、16 4、圓臺(tái)的上、下底面半徑和高的比為,母線長(zhǎng)為10,則圓臺(tái)體積為( ) A、 B、 C、 D、 二、填空題 5、正四棱臺(tái)的上、下底面邊長(zhǎng)分別為2和4,高為2,則體積為 6、一個(gè)正三棱錐的高和底面邊長(zhǎng)都為,則體積為 ,側(cè)棱與底面所成角的余弦值為 7、棱長(zhǎng)為1的正方體,分別用過共頂點(diǎn)的三條棱的中點(diǎn)的平面去截正方體,則截 去8個(gè)三棱錐后,剩下的多面體的體積為 三、解答題 8、三邊長(zhǎng),以所在直線為軸,將此三角形旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積 B A E C D F D1 C1 A1 B1 9、正方體ABCD—A1B1C1D1棱長(zhǎng)為的正方體,E、F分別為棱與中點(diǎn),求四棱錐的體積。 空間幾何體的體積(二) 教學(xué)目的:球的體積及表面積公式應(yīng)用 教學(xué)重點(diǎn):球的體積表面積公式的綜合應(yīng)用 教學(xué)難點(diǎn):公式的推導(dǎo),體會(huì)無窮極限的思想 教學(xué)方法: 教學(xué)過程: 復(fù)習(xí)柱、錐、臺(tái)體的體積公式 球的體積公式的推導(dǎo) 大圓: 例1、課本56頁例2 例2、P、A、B、C是球O表面上的四個(gè)點(diǎn),PA、PB、PC兩兩垂直,且PA=PB=PC=1 求球的體積和表面積。 例3、正四棱錐P—ABCD的底面的四個(gè)頂點(diǎn)A、B、C、D在球O的同一個(gè)大圓上,若,求球的表面積。 課堂小結(jié): 空間幾何體的體積(二)作業(yè) 班級(jí) 姓名 學(xué)號(hào) 得分 1、三個(gè)球的半徑之比是,求證:最大球的體積等于其他兩個(gè)球體積的三倍。 2、一個(gè)圓柱形的玻璃瓶的內(nèi)半徑為,瓶?jī)?nèi)所裝水深為,把一個(gè)鋼球完全浸入水中,瓶中水的高度上升到,求鋼球的半徑。 3、正三棱錐的棱長(zhǎng)都是,求它的內(nèi)切球的表面積。 4、一個(gè)多面體的表面積為,體積為,若存在內(nèi)切球,求內(nèi)切球的半徑。 5、棱長(zhǎng)為1的正方體(1)求正方體內(nèi)切球的表面積 (2)求正方體外接球的體積 6、體積相等的正方體、球、等邊圓柱(即底面直徑與母線相等的圓柱)全面積分別為,比較的大小關(guān)系。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 空間幾何體的表面積和體積 2019 2020 年高 數(shù)學(xué) 1.3 空間 幾何體 表面積 體積 教案 新人 必修
鏈接地址:http://m.jqnhouse.com/p-2569941.html