《高中數(shù)學(xué)課件 第二章 《第4節(jié) 函數(shù)的奇偶性》》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)課件 第二章 《第4節(jié) 函數(shù)的奇偶性》(48頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義. 1 .奇偶性的定義 思考探究(1 )奇偶函數(shù)的定義域有何特點(diǎn)?(2 )是否存在既是奇函數(shù)又是偶函數(shù)的函數(shù)?提示:奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱.提示:存在.該函數(shù)的特點(diǎn)是定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,且解析式化簡(jiǎn)后等于0 . 2 .奇偶函數(shù)的性質(zhì)(1 )奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上的單調(diào)性,偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上的單調(diào)性(填“相同”、“相反”).(2 )在公共定義域內(nèi),兩個(gè)奇函數(shù)的和函數(shù)是,兩個(gè)奇函數(shù)的積函數(shù)是;兩個(gè)偶函數(shù)的和函數(shù)、積函數(shù)是.一個(gè)奇函數(shù),一個(gè)偶函數(shù)的積函數(shù)是.(3 )若f(x)是奇函數(shù)且在x0處有定義,則f(0 ).相反奇函數(shù)偶函數(shù)偶函數(shù)奇
2、函數(shù)0相同 1 .設(shè)f(x)是R上的任意函數(shù),則下列敘述正確的是()A.f(x)f(x)是奇函數(shù)B.f(x)|f(x)|是奇函數(shù)C.f(x)f(x)是偶函數(shù)D.f(x)f(x)是偶函數(shù)解析:令F(x)f(x)f(x).F(x)f(x)f(x)為偶函數(shù),故D正確.答案:D 2 .對(duì)任意實(shí)數(shù)x,下列函數(shù)中的奇函數(shù)是()A.y2 x3 B.y3 x2C.yln5 xD.y|x|cosx解析:若f(x)ln5 x,則f(x)ln5xln(5 x)1ln5 xf(x).函數(shù)yln5 x為奇函數(shù).答案:C 3 .已知f(x)ax2bx是定義在a1 ,2 a上的偶函數(shù),那么a b的值是()A.B.C.D.解
3、析:函數(shù)f(x)ax2bx在x a1 ,2 a上為偶函數(shù), b0,且a12 a0,即b0,a. ab.答案:B 4 .已知函數(shù)yf(x)為奇函數(shù),若f(3 )f(2 )1,則f(2 )f(3 ).解析:由題意得f(2 )f(3 )f(2 )f(3 )f(3 )f(2 )1 .答案:1 5 .設(shè)函數(shù)f(x)為奇函數(shù),則a.解析: f(x)為奇函數(shù),由f(1 )f(1 )得a1 .答案:1 判斷函數(shù)奇偶性的一般方法(1 )首先確定函數(shù)的定義域,看其是否關(guān)于原點(diǎn)對(duì)稱的.否則,既不是奇函數(shù)也不是偶函數(shù).(2 )若定義域關(guān)于原點(diǎn)對(duì)稱,則可用下述方法進(jìn)行判斷:定義判斷:f(x)f(x) f(x)為偶函數(shù),
4、f(x)f(x) f(x)為奇函數(shù). 等價(jià)形式判斷:f(x)f(x)0 f(x)為偶函數(shù),f(x)f(x)0 f(x)為奇函數(shù).或等價(jià)于:,則f(x)為偶函數(shù);1,則f(x)為奇函數(shù).(3 )對(duì)于分段函數(shù)的奇偶性的判斷應(yīng)分段進(jìn)行.特別警示分段函數(shù)的奇偶性判定,要注意定義域內(nèi)x取值的任意性,應(yīng)分段討論,討論時(shí)可依據(jù)x范圍取相應(yīng)的解析式化簡(jiǎn).此類問(wèn)題也可利用圖象作判斷. 判斷下列函數(shù)的奇偶性:思路點(diǎn)撥(1 )f(x)=x();(2 )f(x)=log2 (x+);(3 )f(x)=;(4 )f(x)=(5 )f(x)=x2 -|x-a|+2 . 課堂筆記(1 )函數(shù)定義域?yàn)?,0 ) (0,).
5、f(x)是偶函數(shù). f(-x)=-x()=f(x). (2 )函數(shù)定義域?yàn)镽. f(x)是奇函數(shù). f(-x)=log2 (-x+)=log2 =-log2 (x+)=-f(x), (3 )由得x,或x.函數(shù)f(x)的定義域?yàn)椋?又對(duì)任意的x ,x ,且f(x)f(x)f(x)0, f(x)既是奇函數(shù)又是偶函數(shù). (4 )函數(shù)定義域?yàn)?,0 ) (0,).當(dāng)x0時(shí),x0,則f(x)(x)2x(x2x)f(x);當(dāng)x0時(shí),x0,則f(x)(x)2xx2x(x2x)f(x).對(duì)任意x (,0 ) (0,)都有f(x)f(x).故f(x)為奇函數(shù). (5 )函數(shù)f(x)的定義域?yàn)镽.當(dāng)a0時(shí),f(x
6、)f(x), f(x)是偶函數(shù);當(dāng)a0時(shí),f(a)a22,f(a)a22 |a|2 .f(a)f(a),且f(a)f(a)2 (a2|a|2 )2 (|a|)20, f(x)是非奇非偶函數(shù). 判斷(或證明)抽象函數(shù)的奇偶性的步驟(1 )利用函數(shù)奇偶性的定義,找準(zhǔn)方向(想辦法出現(xiàn)f(x),f(x);(2 )巧妙賦值,合理、靈活變形配湊;(3 )找出f(x)與f(x)的關(guān)系,得出結(jié)論. 已知函數(shù)f(x)對(duì)一切x、y R,都有f(xy)f(x)f(y).(1 )試判斷f(x)的奇偶性;(2 )若f(3 )a,用a表示f(1 2 ).思路點(diǎn)撥 課堂筆記(1 )顯然f(x)的定義域是R,關(guān)于原點(diǎn)對(duì)稱.又
7、函數(shù)f(x)對(duì)一切x、y R都有f(xy)f(x)f(y).令xy0,得f(0 )2 f(0 ), f(0 )0 .再令yx,得f(0 )f(x)f(x), f(x)f(x), f(x)為奇函數(shù).(2 ) f(3 )a且f(x)為奇函數(shù), f(3 )f(3 )a.又 f(xy)f(x)f(y),x、y R, f(1 2 )f(66 )f(6 )f(6 )2 f(6 )2 f(33 )4 f(3 )4 a. (1 )對(duì)抽象函數(shù)解不等式問(wèn)題,應(yīng)充分利用函數(shù)的單調(diào)性,將“f ”脫掉,轉(zhuǎn)化為我們會(huì)求的不等式;(2 )奇偶函數(shù)的不等式求解時(shí),要注意到:奇函數(shù)在對(duì)稱的單調(diào)區(qū)間上有相同的單調(diào)性,偶函數(shù)在對(duì)稱
8、的單調(diào)區(qū)間上有相反的單調(diào)性. 函數(shù)f(x)的定義域?yàn)镈x|x R且x0 ,且滿足對(duì)于任意x1,x2 D,有f(x1 x2 )f(x1 )f(x2 ).(1 )求f(1 )的值;(2 )判斷f(x)的奇偶性并證明你的結(jié)論;(3 )如果f(4 )1,f(3 x1 )f(2 x6 )3,且f(x)在(0,)上是增函數(shù),求x的取值范圍.思路點(diǎn)撥 課堂筆記(1 )對(duì)于任意x1,x2 D,有f(x1 x2 )f(x1 )f(x2 ),令x1x21,得f(1 )2 f(1 ), f(1 )0 .(2 )令x1x21,有f(1 )f(1 )f(1 ), f(1 )f(1 )0 .令x11,x2x有f(x)f(
9、1 )f(x), f(x)f(x), f(x)為偶函數(shù). (3 )依題設(shè)有f(44 )=f(4 )+f(4 )=2 .f(1 64 )=f(1 6 )+f(4 )=3 , f(3 x+1 )+f(2 x-6 )3 ,即f(3 x+1 )(2 x-6 )f(6 4 ).(*) 法一: f(x)為偶函數(shù), f(|(3 x1 )(2 x6 )|)f(6 4 ).又 f(x)在(0,)上是增函數(shù), 0|(3 x1 )(2 x6 )|6 4 .解上式,得3x5或x或x3 . x的取值范圍為x|x或x3或3x5 . 法二: f(x)在(0,)上是增函數(shù), (*)等價(jià)于不等式組或或 3x5或x或x3 . x
10、的取值范圍為x|x或x3或3x5 . 將本例中的條件f(x1 x2 )f(x1 )f(x2 )改為f(x1x2 )f(x1 )f(x2 ),定義域Dx|x0 改為DR,求解第(2 ),(3 )問(wèn). f(x)為奇函數(shù).解:(2 )令x1x20,得f(0 )0;令x1x,x2x,得f(0 )f(x)f(x),即f(x)f(x), (3 ) f(4 )1, f(8 )f(4 )f(4 )2,f(1 2 )f(48 )f(4 )f(8 )3 .又 f(3 x1 )f(2 x6 )3, f(3 x12 x6 )f(1 2 ),即f(5 x5 )f(1 2 ).又 f(x)在(0,)上為增函數(shù),f(x)為
11、奇函數(shù), f(x)在R上是增函數(shù), 5 x5 1 2, x. 函數(shù)奇偶性的判定以及利用函數(shù)的奇偶性求參數(shù)是高考對(duì)函數(shù)奇偶性的常規(guī)考法,0 9年山東、陜西等省將函數(shù)的奇偶性、單調(diào)性以及比較大小等問(wèn)題綜合出現(xiàn)在高考試題中,這是高考新的一個(gè)考查方向. 考題印證(2 0 0 9 山東高考)已知定義在R上的奇函數(shù)f(x)滿足f(x4 )f(x),且在區(qū)間0 ,2 上是增函數(shù),則()A.f(2 5 )f(1 1 )f(8 0 )B.f(8 0 )f(1 1 )f(2 5 )C.f(1 1 )f(8 0 )f(2 5 )D.f(2 5 )f(8 0 )f(1 1 ) 【解析】 f(x4 )f(x), T8
12、.又f(x)是奇函數(shù), f(0 )0 . f(x)在0 ,2 上是增函數(shù),且f(x)0, f(x)在2 ,0 上也是增函數(shù),且f(x)0 .又x 2 ,4 時(shí),f(x)f(x4 )0,且f(x)為減函數(shù).同理f(x)在4 ,6 為減函數(shù)且f(x)0 .如圖. f(2 5 )f(1 )0,f(1 1 )f(3 )0,f(8 0 )f(0 )0, f(2 5 )f(8 0 )f(1 1 ).【答案】D 自主體驗(yàn)(2 0 0 9 陜西高考)定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2 (,0 (x1 x2 ),有(x2x1 )(f(x2 )f(x1 )0 .則當(dāng)n N*時(shí),有()A.f(n)f
13、(n1 )f(n1 )B.f(n1 )f(n)f(n1 )C.f(n1 )f(n)f(n1 )D.f(n1 )f(n1 )f(n) 解析:由(x2x1 )(f(x2 )f(x1 )0得f(x)在x (,0 為增函數(shù).又f(x)為偶函數(shù),所以f(x)在x (0,)為減函數(shù).又f(n)f(n)且0 n1nn1, f(n1 )f(n)f(n1 ),即f(n1 )f(n)f(n1 ).答案:C 1 .下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是()A.yx3,x RB.ysinx,x RC.yx,x RD.y()x,x R解析:yx3為奇函數(shù)且為減函數(shù);ysinx為奇函數(shù),但不是單調(diào)函數(shù);yx為增
14、函數(shù);y()x不是奇函數(shù).答案:A 2 .(2 0 1 0 泉州模擬)若x R、n N*,定義:x(x1 )(x 2 )(xn1 ),例如(5 )(4 )(3 )(2 )(1 )1 2 0,則函數(shù)f(x)的奇偶性為()A.是奇函數(shù)而不是偶函數(shù)B.是偶函數(shù)而不是奇函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù) 解析: x(x1 )(x2 )(xn1 ), (x9 )(x8 )(x7 )(x9 )(x29 2 )(x28 2 )(x21 2 )x. (x29 2 )(x28 2 )(x21 2 )x2, f(x)是偶函數(shù).答案:B 3 .函數(shù)f(x)x3sinx1 (x R),若f(a)
15、2,則f(a)的值為()A.3 B.0C.1 D.2解析:f(a)a3sina1,f(a)(a)3sin(a)1a3sina1,得f(a)f(a)2, f(a)2f(a)220 .答案:B 4 .已知f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),且f(x)g(x)()x,則f(1 ),g(0 ),g(1 )之間的大小關(guān)系是.解析: f(x)和g(x)分別為奇函數(shù)和偶函數(shù),且f(x)g(x)()x, f(x)g(x)()x,即f(x)g(x)2 x, f(x)g(x)2 x,由得 答案:f(1 )g(0 )g(1 ) 5 .設(shè)定義在2 ,2 上的偶函數(shù)f(x)在區(qū)間0 ,2 上單調(diào)遞減,若f(1m)f(m),則實(shí)數(shù)m的取值范圍是.解析: f(x)是偶函數(shù), f(x)f(x)f(|x|).不等式f(1m)f(m) f(|1m|)f(|m|).又當(dāng)x 0 ,2 時(shí),f(x)是減函數(shù).答案:解得 6 .已知函數(shù)f(x) (a、b、c N)是奇函數(shù),又 f(1 )2,f(2 )3,求a、b、c的值.解: f(x)為奇函數(shù) f(x)f(x),即. c0,即f(x).又 f(1 )2,f(2 )3,即 4 a13 a3, a2 .又 a N, a0或a1 .當(dāng)a0時(shí),b,舍去.當(dāng)a1時(shí),b1, a1,b1,c0 .