《點(diǎn)集拓?fù)鋵W(xué)》第二章-拓?fù)淇臻g與連續(xù)映射-學(xué)習(xí)筆記(總41頁)
《《點(diǎn)集拓?fù)鋵W(xué)》第二章-拓?fù)淇臻g與連續(xù)映射-學(xué)習(xí)筆記(總41頁)》由會(huì)員分享,可在線閱讀,更多相關(guān)《《點(diǎn)集拓?fù)鋵W(xué)》第二章-拓?fù)淇臻g與連續(xù)映射-學(xué)習(xí)筆記(總41頁)(40頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第2章 度量空間與連續(xù)映射 從數(shù)學(xué)分析中已經(jīng)熟知單變量和多變量的連續(xù)函數(shù),它們的定義域和值域都是歐氏空間(直線,平面或空間等等)或是其中的一部分.在這一章中我們首先將連續(xù)函數(shù)的定義域和值域主要特征抽象出來用以定義度量空間,將連續(xù)函數(shù)的主要特征抽象出來用以定義度量空間之間的連續(xù)映射(參見2.1).然后將兩者再度抽象,給出拓?fù)淇臻g和拓?fù)淇臻g之間的連續(xù)映射(參見2.2).隨后再逐步提出拓?fù)淇臻g中的一些基本問題如鄰域,閉包,內(nèi)部,邊界,基和子基,序列等等. 2.1 度量空間與連續(xù)映射 本節(jié)重點(diǎn):掌握拓?fù)鋵W(xué)中度量的概念及度量空間中的連續(xù)映射的概念. 注意區(qū)別:數(shù)學(xué)分析中度量、連續(xù)映射
2、的概念與本節(jié)中度量、連續(xù)映射的概念. 注意,在本節(jié)的證明中,應(yīng)細(xì)細(xì)體會(huì)證明的方法. 首先讓我們回憶一下在數(shù)學(xué)分析中學(xué)習(xí)過的連續(xù)函數(shù)的定義.函數(shù)f:R→R稱為在點(diǎn)∈R處是連續(xù)的,如果對(duì)于任意實(shí)數(shù)ε>0,存在實(shí)數(shù)δ>0,使得對(duì)于任何x∈R,當(dāng)|x-|<δ時(shí),有|f(x)-f()|<ε.在這個(gè)定義中只涉及兩個(gè)實(shí)數(shù)之間的距離(即兩個(gè)實(shí)數(shù)之差的絕對(duì)值)這個(gè)概念;為了驗(yàn)證一個(gè)函數(shù)在某點(diǎn)處的連續(xù)性往往只要用到關(guān)于上述距離的最基本的性質(zhì),而與實(shí)數(shù)的其它性質(zhì)無關(guān),關(guān)于多元函數(shù)的連續(xù)性情形也完全類似.以下,我們從這一考察出發(fā),抽象出度量和度量空間的概念. 定義2.1.1 設(shè)X是一個(gè)集合,ρ:XX
3、→R.如果對(duì)于任何x,y,z∈X,有 (1)(正定性),ρ(x,y)≥0并且ρ(x,y)=0當(dāng)且僅當(dāng)x=y; (2)(對(duì)稱性)ρ(x,y)=ρ(y,x); (3)(三角不等式)ρ(x,z)≤ρ(x,y)+ρ(y,z) 則稱ρ是集合X的一個(gè)度量. 如果ρ是集合X的一個(gè)度量,稱(X,ρ)是一個(gè)度量空間,或稱X是一個(gè)對(duì)于ρ而言的度量空間.有時(shí),或者度量ρ早有約定,或者在行文中已作交代,不提它不至于引起混淆,這時(shí)我們稱X是一個(gè)度量空間.此外,對(duì)于任意兩點(diǎn)x,y∈X,實(shí)數(shù)ρ(x,y)稱為從點(diǎn)x到點(diǎn)y的距離. 著重理解:度量的本質(zhì)是什么? 例2.1.1 實(shí)數(shù)空間R. 對(duì)于實(shí)數(shù)集合R
4、,定義ρ:RR→R如下:對(duì)于任意x,y∈R,令 ρ(x,y)=|x-y|.容易驗(yàn)證ρ是R的一個(gè)度量,因此偶對(duì)(R,ρ)是一個(gè)度量空間.這個(gè)度量空間特別地稱為實(shí)數(shù)空間或直線.這里定義的度量ρ,稱為R的通常度量,并且常常略而不提,逕稱R為實(shí)數(shù)空間.(今后我們說實(shí)數(shù)空間,均指具有通常度量的實(shí)數(shù)空間.) 例2.1.2 n維歐氏空間. 對(duì)于實(shí)數(shù)集合R的n重笛卡兒積 =RR…R 定義ρ:→R如下:對(duì)于任意x=(), y=, 令 ρ(x,y)= 容易驗(yàn)證(詳見課本本節(jié)最后部分的附錄)ρ是的一個(gè)度量,因此偶對(duì)(,ρ)是一個(gè)度量空間.這個(gè)度量空間特別地稱為n維歐氏空間.這里定義的度量ρ,稱
5、為的通常度量,并且常常略而不提,逕稱為n維歐氏空間.2維歐氏空間通常稱為歐氏平面或平面.(今后說通常度量,均指滿足這種公式的度量) 例2.1.3 Hilbert空間H. 記H為平方收斂的所有實(shí)數(shù)序列構(gòu)成的集合,即 H={x=()|<∞} 定義ρ如下:對(duì)于任意 x=(),y=()∈H 令ρ(x,y)= 說明這個(gè)定義是合理的(即驗(yàn)證<∞)以及驗(yàn)證ρ是H的一個(gè)度量,均請(qǐng)參見課本本節(jié)最后部分的附錄.偶對(duì)(H,ρ)是一個(gè)度量空間.這個(gè)度量空間特別地稱為Hilbert空間.這里定義的度量ρ稱為H的通常度量,并且常常略而不提,逕稱H為Hilbert空間. 例2.1.4 離
6、散的度量空間. 設(shè)(X,ρ)是一個(gè)度量空間.稱(X,ρ)是離散的,或者稱ρ是X的一個(gè)離散度量,如果對(duì)于每一個(gè)x∈X,存在一個(gè)實(shí)數(shù)>0使得ρ(x,y)>對(duì)于任何y∈X,x≠y,成立. 例如我們假定X是一個(gè)集合,定義ρ:XX→R使得對(duì)于任何 x,y∈X,有 ρ(x,y)= 容易驗(yàn)證ρ是X的一個(gè)離散的度量,因此度量空間(X,ρ)是離散的. 通過這幾個(gè)例子,可知,度量也是一種映射,但它的象空間是實(shí)數(shù). 離散的度量空間或許是我們以前未曾接觸過的一類空間,但今后會(huì)發(fā)現(xiàn)它的性質(zhì)是簡(jiǎn)單的. 定義2.1.2 設(shè)(X,ρ)是一個(gè)度量空間,x∈X.對(duì)于任意給定的實(shí)數(shù)ε>0,集合 {y∈X|ρ(
7、x,y)<ε} 記作B(x,ε),或,稱為一個(gè)以x為中心以ε為半徑的球形鄰域,簡(jiǎn)稱為x的一個(gè)球形鄰域,有時(shí)也稱為x的一個(gè)ε鄰域. 此處的球形鄰域是球狀的嗎? 定理2.1.1 度量空間(X,ρ)的球形鄰域具有以下基本性質(zhì): (1)每一點(diǎn)x∈X,至少有一個(gè)球形鄰域,并且點(diǎn)x屬于它的每一個(gè)球形鄰域; (2)對(duì)于點(diǎn)x∈X的任意兩個(gè)球形鄰域,存在x的一個(gè)球形鄰域同時(shí)包含于兩者; (3) 如果y∈X屬于x∈X的某一個(gè)球形鄰域,則y有一個(gè)球形鄰域包含于x的那個(gè)球形鄰域. 證明:(1)設(shè)x∈X.對(duì)于每一個(gè)實(shí)數(shù)ε>0,B(x,ε)是x的一個(gè)球形鄰域,所以x至少有一個(gè)球形鄰域;由于ρ(x,x)
8、=0,所以x屬于它的每一個(gè)球形鄰域. (2)如果B(x,)和B(x,)是x∈X的兩個(gè)球形鄰域,任意選取實(shí)數(shù) ε>0,使得ε<min{ },則易見有 B(x,ε)B(x,)∩B(x,) 即B(x,ε)滿足要求. (3)設(shè)y∈B(x,ε).令=ε-ρ(x,y).顯然.>0.如果z∈B(y,),則 ρ(z,x)≤ρ(z,y)+ρ(y,x)<+ρ(y,x)=ε 所以z∈B(x,ε).這證明B(y,)B(x,ε). 定義2.1.3 設(shè)A是度量空間X的一個(gè)子集.如果A中的每一個(gè)點(diǎn)都有一個(gè)球形鄰域包含于A(即對(duì)于每一個(gè)a∈A,存在實(shí)數(shù)ε>0使得B(a,ε)A,則稱A是度量空間X中的一個(gè)
9、開集. 注意:此處的開集僅是度量空間的開集. 例2.1.5 實(shí)數(shù)空間R中的開區(qū)間都是開集. 設(shè)a,b∈R,a<b.我們說開區(qū)間 (a,b)={x∈R|a<x<b} 是R中的一個(gè)開集.這是因?yàn)槿绻鹸∈(a,b),若令 ε=min{x-a,b-x}, 則有B(x,ε)(a,b).也同樣容易證明無限的開區(qū)間 (a,∞)={x∈R|x>a},(-∞,b)={x∈R|x<b} (-∞,∞)=R 都是R中的開集.然而閉區(qū)間 [a,b]={x∈R|a≤x≤b} 卻不是R中的開集.因?yàn)閷?duì)于a∈[a,b]而言,任何 ε>0,B(x,ε)[a,b]都不成立.類似地,半開半閉的區(qū)間 (
10、a,b]={x∈R|a<x≤b},[a,b)={x∈R|a≤x<b} 無限的閉區(qū)問 [a,∞)={x∈R|x≥a},(-∞,b]={x∈R|x≤b} 都不是R中的開集. 定理2.1.2 度量空間X中的開集具有以下性質(zhì): (1)集合X本身和空集都是開集; (2)任意兩個(gè)開集的交是一個(gè)開集; (3)任意一個(gè)開集族(即由開集構(gòu)成的族)的并是一個(gè)開集. 證明 根據(jù)定理2.1.1 (1)X中的每一個(gè)元素x都有一個(gè)球形鄰域,這個(gè)球形鄰域當(dāng)然包含在X中,所以X滿足開集的條件;空集中不包含任何一個(gè)點(diǎn),也自然地可以認(rèn)為它滿足開集的條件. (2)設(shè)U和V是X中的兩個(gè)開集.如果x∈U∩V,
11、則存在x的一個(gè)球形鄰域B(x,)包含于U,也存在x的一個(gè)球形鄰域B(x,)包含于V.根據(jù)定理,x有一個(gè)球形鄰域B(x,ε)同時(shí)包含于B(x,)和B(x,),因此 B(x,ε)B(x,)∩B(x,)U∩V 由于U∩V中的每一點(diǎn)都有一個(gè)球形鄰域包含于U∩V,因此U∩V是一個(gè)開集. (3)設(shè)*Α是一個(gè)由X中的開集構(gòu)成的子集族.如果,則存在∈*A使得x∈由于是一個(gè)開集,所以x有一個(gè)球形鄰域包含于,顯然這個(gè)球形鄰域也包含于.這證明是X中的一個(gè)開集. 此外,根據(jù)定理,每一個(gè)球形鄰域都是開集. 球形鄰域與開集有何聯(lián)系? 為了討論問題的方便,我們將球形鄰域的概念稍稍作一點(diǎn)推廣. 定義
12、2.1.4 設(shè)x是度量空間X中的一個(gè)點(diǎn),U是X的一個(gè)子集.如果存在一個(gè)開集V滿足條件:x∈VU,則稱U是點(diǎn)x的一個(gè)鄰域. 下面這個(gè)定理為鄰域的定義提供了一個(gè)等價(jià)的說法,并且表明從球形鄰域推廣為鄰域是自然的事情. 定理2.1.3 設(shè)x是度量空間X中的一個(gè)點(diǎn).則X的子集U是x的一個(gè)鄰域的充分必要條件是x有某一個(gè)球形鄰域包含于U. 證明 如果U是點(diǎn)x的一個(gè)鄰域,根據(jù)鄰域的定義存在開集V使得 x∈VU,又根據(jù)開集的定義,x有一個(gè)球形鄰域包含于V,從而這個(gè)球形鄰域也就包含于U.這證明U滿足定理的條件. 反之,如果U滿足定理中的條件,由于球形鄰域都是開集,因此U是x的鄰域. 現(xiàn)在我們把數(shù)
13、學(xué)分析中的連續(xù)函數(shù)的概念推廣為度量空間之間的連續(xù)映射. 定義2.1.5 設(shè)X和Y是兩個(gè)度量空間,f:X→Y,以及∈X如果對(duì)于f()的任何一個(gè)球形鄰域B(f(),ε),存在的某一個(gè)球形鄰域B(,δ),使得f(B(,δ))B(f(),ε),則稱映射在點(diǎn)處是連續(xù)的. 如果映射f在X的每一個(gè)點(diǎn)x∈X處連續(xù),則稱f是一個(gè)連續(xù)映射. 以上的這個(gè)定義是數(shù)學(xué)分析中函數(shù)連續(xù)性定義的純粹形式推廣.因?yàn)槿绻O(shè)ρ和分別是度量空間X和Y中的度量,則f在點(diǎn)處連續(xù),可以說成:對(duì)于任意給定的實(shí)數(shù)ε>0,存在實(shí)數(shù)δ>0使得對(duì)于任何x∈X只要ρ(x,)<δ(即x∈B(,δ)便有 (f(x),f())<ε.(即f(x)
14、∈B(f(),ε)). 下面的這個(gè)定理是把度量空間和度量空間之間的連續(xù)映射的概念推廣為拓?fù)淇臻g和拓?fù)淇臻g之間的連續(xù)映射的出發(fā)點(diǎn). 定理2.1.4 設(shè)X和Y是兩個(gè)度量空間,f:X→Y以及∈X.則下述條件(1)和(2)分別等價(jià)于條件(1)*和(2)*: (1)f在點(diǎn)處是連續(xù)的; (1)*f()的每一個(gè)鄰域的原象是的一個(gè)鄰域; (2)f是連續(xù)的; (2)*Y中的每一個(gè)開集的原象是X中的一個(gè)開集. 證明 條件(1)蘊(yùn)涵(1)*:設(shè)(1)成立.令U為f()的一個(gè)鄰域.根據(jù)定理2.1.3,f()有一個(gè)球形鄰域B(f(),ε)包含于U.由于f在點(diǎn)處是連續(xù)的,所以有一個(gè)球形鄰域 B(,δ)使
15、得f(B(,δ))B(f(),ε).然而,(B(f(),ε)(U),所以 B(,δ)(U),這證明(U)是的一個(gè)鄰域. 條件(1)*蘊(yùn)涵(1).設(shè)條件(1)*成立.任意給定f()的一個(gè)鄰域B(f(),ε),則(B(f(),ε)是的一個(gè)鄰域.根據(jù)定理2.1.3,有一個(gè)球形鄰域B(,δ)包含于 (B(f(),ε). 因此f(B(,δ))B(f(),ε).這證明f在點(diǎn)處連續(xù). 條件(2)蘊(yùn)涵(2)*.設(shè)條件(2)成立.令V為Y中的一個(gè)開集, U=(V).對(duì)于每一個(gè)x∈U,我們有f(x)∈V.由于V是一個(gè)開集,所以V是f(x)的一個(gè)鄰域.由于f在每一點(diǎn)處都連續(xù),故根據(jù)(1)*,U是x的一個(gè)鄰域.
16、于是有包含x的某一個(gè)開集Ux使得UxU.易見U=∪x∈UUx.由于每一個(gè)Ux都是開集,根據(jù)定理2.1.2,U是一個(gè)開集. 條件(2)*蘊(yùn)涵(2).設(shè)(2)*成立,對(duì)于任意x∈X,設(shè)U是f(x)的一個(gè)鄰域,即存在包含f(x)的一個(gè)開集V U.從而x∈(V)(U).根據(jù)條件(2)*,(V)是一個(gè)開集,所以(U)是x的一個(gè)鄰域,對(duì)于x而言,條件(1)*成立,于是f在點(diǎn)x處連續(xù).由于點(diǎn)x是任意選取的,所以f是一個(gè)連續(xù)映射. 從這個(gè)定理可以看出:度量空間之間的一個(gè)映射是否是連續(xù)的,或者在某一點(diǎn)處是否是連續(xù)的,本質(zhì)上只與度量空間中的開集有關(guān)(注意,鄰域是通過開集定義的).這就導(dǎo)致我們甩開度量這個(gè)概念,
17、參照度量空間中開集的基本性質(zhì)(定理 作業(yè): P47 2.2 拓?fù)淇臻g與連續(xù)映射 本節(jié)重點(diǎn): 拓?fù)渑c拓?fù)淇臻g的概念,并在此空間上建立起來的連續(xù)映射的概念. 注意區(qū)別: 拓?fù)淇臻g的開集與度量空間開集的異同;連續(xù)映射概念的異同. 現(xiàn)在我們遵循前一節(jié)末尾提到的思路,即從開集及其基本性質(zhì)(定理 定義2.2.1 設(shè)X是一個(gè)集合,τ是X的一個(gè)子集族.如果τ滿足如下條件: (l)X,∈τ ; (2)若A,B∈T ,則A∩B∈τ ; (3)若 則稱τ是X的一個(gè)拓?fù)洌? 如果τ是集合X的一個(gè)拓?fù)?,則稱偶對(duì)(X,τ)是一個(gè)拓?fù)淇臻g,或稱集合X是一個(gè)相對(duì)于拓?fù)洇佣?/p>
18、的拓?fù)淇臻g;此外T的每一個(gè)元素都叫做拓?fù)淇臻g(X,τ)或(X)中的一個(gè)開集.即:A∈τA是開集. (此定義與度量空間的開集的性質(zhì)一樣嗎?留給大家思考) 經(jīng)過簡(jiǎn)單的歸納立即可見,以上定義中的條件(2)蘊(yùn)涵著:有限多個(gè)開集的交仍是開集,條件(3)蘊(yùn)涵著:任意多個(gè)開集的并仍是開集. 現(xiàn)在首先將度量空間納入拓?fù)淇臻g的范疇. 定義2.2.2 設(shè)(X,ρ)是一個(gè)度量空間令為由X中的所有開集構(gòu)成的集族.根據(jù)定理2.1.2,(X,)是X的一個(gè)拓?fù)洌覀兎Q為X的由度量ρ誘導(dǎo)出來的拓?fù)洌送馕覀兗s定:如果沒有另外的說明,我們提到度量空間(X,ρ)的拓?fù)鋾r(shí),指的就是拓?fù)洌辉诜Q度量空間(X,ρ)為拓?fù)?/p>
19、空間時(shí),指的就是拓?fù)淇臻g(X,) 因此,實(shí)數(shù)空間R,n維歐氏空間(特別,歐氏平面),Hilbert空間H都可以叫做拓?fù)淇臻g,它們各自的拓?fù)浔闶怯衫?.1.1,例 例2.2.1 平庸空間. 設(shè)X是一個(gè)集合.令T ={X,}.容易驗(yàn)證,T 是X的一個(gè)拓?fù)?,稱之為X的平庸拓?fù)?;并且我們稱拓?fù)淇臻g(X,T)為一個(gè)平庸空間.在平庸空間(X,T)中,有且僅有兩個(gè)開集,即X本身和空集. 例2.2.2 離散空間. 設(shè)X是一個(gè)集合.令T =P(X),即由X的所有子集構(gòu)成的族.容易驗(yàn)證,T是X的一個(gè)拓?fù)?,稱之為X的離散拓?fù)?;并且我們稱拓?fù)淇臻g(X,T)為一個(gè)離散空間.在離散空間(X,T)中,
20、X的每一個(gè)子集都是開集. 例2.2.3 設(shè)X={a,b,c}.令T ={,{a},{a,b},{a,b,c}}. 容易驗(yàn)證,T是X的一個(gè)拓?fù)洌虼耍╔,T)是一個(gè)拓?fù)淇臻g.這個(gè)拓?fù)淇臻g既不是平庸空間又不是離散空間. 例2.2.4 有限補(bǔ)空間. 設(shè)X是一個(gè)集合.首先我們重申:當(dāng)我們考慮的問題中的基礎(chǔ)集自明時(shí),我們并不每次提起.因此在后文中對(duì)于X的每一個(gè)子集A,它的補(bǔ)集X-A我們寫為.令 T ={U X|是X的一個(gè)有限子集}∪{} 先驗(yàn)證T是X的一個(gè)拓?fù)洌? (1)X∈T (因?yàn)?);另外,根據(jù)定義便有∈T. (2)設(shè)A,B∈T如果A和B之中有一個(gè)是空集,則A∩B∈T,假定A
21、和B都不是空集.這時(shí) 是X的一個(gè)有限子集,所以A∩B∈T . (3)設(shè).令,顯然有 如果,則 設(shè)任意選?。@時(shí)是X的一個(gè)有限子集,所以 根據(jù)上述(1),(2)和(3),P是X的一個(gè)拓?fù)?,稱之為X的有限補(bǔ)拓?fù)洌負(fù)淇臻g(X,P)稱為一個(gè)有限補(bǔ)空間. 例2.2.5 可數(shù)補(bǔ)空間. 設(shè)X是一個(gè)集合.令 T ={U X|是X的一個(gè)可數(shù)子集}∪{} 通過與例 是X的一個(gè)拓?fù)?,稱之為X的可數(shù)補(bǔ)拓?fù)洌負(fù)淇臻g(X,T )稱為一個(gè)可數(shù)補(bǔ)空間. 一個(gè)令人關(guān)心的問題是拓?fù)淇臻g是否真的要比度量空間的范圍更廣一點(diǎn)?換句話就是問:是否每一個(gè)拓?fù)淇臻g的拓?fù)涠伎梢杂赡骋粋€(gè)度量誘導(dǎo)出來?
22、 定義2.2.3 設(shè)(X,P)是一個(gè)拓?fù)淇臻g.如果存在X的一個(gè)度量ρ使得拓?fù)銹即是由度量ρ誘導(dǎo)出來的拓?fù)?,則稱(X,P)是一個(gè)可度量化空間. 根據(jù)這個(gè)定義,前述問題即是:是否每一個(gè)拓?fù)淇臻g都是可度量化空間?從2.1中的習(xí)題2和3可以看出,每一個(gè)只含有限個(gè)點(diǎn)的度量空間作為拓?fù)淇臻g都是離散空間.然而一個(gè)平庸空間如果含有多于一個(gè)點(diǎn)的話,它肯定不是離散空間,因此它不是可度量化的;例,但不是離散空間,也不是可度量化的.由此可見,拓?fù)淇臻g是比可度量空間的范圍要廣泛.進(jìn)一步的問題是滿足一些什么條件的拓?fù)淇臻g是可度量化的?這是點(diǎn)集拓?fù)鋵W(xué)中的重要問題之一,以后我們將專門討論. 現(xiàn)在我們來將度
23、量空間之間的連續(xù)映射的概念推廣為拓?fù)淇臻g之間的連續(xù)映射. 定義2.2.4 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y.如果Y中每一個(gè)開集U的原象(U)是X中的一個(gè)開集,則稱f是X到Y(jié)的一個(gè)連續(xù)映射,或簡(jiǎn)稱映射f連續(xù). 按這種方式定義拓?fù)淇臻g之間的連續(xù)映射,明顯是受到了2.1中的定理,如果f:X→Y是從度量空間X到度量空間Y的一個(gè)連續(xù)映射,那么它也是從拓?fù)淇臻gX到拓?fù)淇臻gY的一個(gè)連續(xù)映射,反之亦然.(按照約定,涉及的拓?fù)洚?dāng)然都是指誘導(dǎo)拓?fù)洌? 下面的這個(gè)定理盡管證明十分容易,但所指出的卻是連續(xù)映射的最重要的性質(zhì). 定理2.2.1 設(shè)X,Y和Z都是拓?fù)淇臻g.則 (1)恒同映射::X→X是一個(gè)
24、連續(xù)映射; (2)如果f:X→Y和g:Y→Z都是連續(xù)映射,則 gof:X→Z也是連續(xù)映射. 證明(l),所以連續(xù). ?。?)設(shè)f:X→Y,g:Y→Z都是連續(xù)映射 這證明gof連續(xù). 在數(shù)學(xué)科學(xué)的許多學(xué)科中都要涉及兩類基本對(duì)象.如在線性代數(shù)中我們考慮線性空間和線性變換,在群論中我們考慮群和同態(tài),在集合論中我們考慮集合和映射,在不同的幾何學(xué)中考慮各自的圖形和各自的變換等等.并且對(duì)于后者都要提出一類來予以重視,例如線性代數(shù)中的(線性)同構(gòu),群論中的同構(gòu),集合論中的—一映射,以及初等幾何學(xué)中的剛體運(yùn)動(dòng)(即平移加旋轉(zhuǎn))等等. 我們現(xiàn)在已經(jīng)提出了兩類基本對(duì)象,即拓?fù)淇臻g
25、和連續(xù)映射.下面將從連續(xù)映射中挑出重要的一類來給予特別的關(guān)注. 定義2.2.5 設(shè)X和Y是兩個(gè)拓?fù)淇臻g.如果f:X→Y是一個(gè)—一映射,并且f和:Y→X都是連續(xù)的,則稱f是一個(gè)同胚映射或同胚. 定理2.2.2 設(shè)X,Y和Z都是拓?fù)淇臻g.則 (1)恒同映射:X→X是一個(gè)同胚; (2)如果f:X→Y是一個(gè)同胚,則:Y→X也是一個(gè)同胚; (3)如果f:X→Y和g:Y→Z都是同胚,則gof:X→Z也是一個(gè)同胚. 證明 以下證明中所涉及的根據(jù),可參見定理2.2.1,定理 l.5.3和定理1.5.4. (l)是一個(gè)—一映射,并且,都是連續(xù)的,從而是同胚. (2)設(shè)f:X→Y是一個(gè)同胚
26、.因此f是一個(gè)—一映射,并且f和 都是連續(xù)的.于是也是一個(gè)—一映射并且和也都是連續(xù)的,所以也是一個(gè)同胚. (3)設(shè)f:X→Y和g:Y→Z都是同胚.因此f和g都是—一映射,并且f,,g和都是連續(xù)的.因此gof也是—一映射,并且gof和都是連續(xù)的.所以gof是一個(gè)同胚. 定義2.2.6 設(shè)X和Y是兩個(gè)拓?fù)淇臻g.如果存在一個(gè)同胚f:X→Y,則稱拓?fù)淇臻gX與拓?fù)淇臻gY是同胚的,或稱X與Y同胚,或稱X同胚于Y. 粗略地說,同胚的兩個(gè)空間實(shí)際上便是兩個(gè)具有相同拓?fù)浣Y(jié)構(gòu)的空間. 定理2.2.3 設(shè)X,Y和Z都是拓?fù)淇臻g.則 (1)X與X同胚; (2)如來X與Y同胚,則Y與X同胚; (3)如
27、果X與Y同胚,Y與Z同胚,則X與Z同胚. 證明從定理 根據(jù)定理2.2.3,我們可以說:在任意給定的一個(gè)由拓?fù)淇臻g組成的族中,兩個(gè)拓?fù)淇臻g是否同胚這一關(guān)系是一個(gè)等價(jià)關(guān)系.因而同胚關(guān)系將這個(gè)拓?fù)淇臻g族分為互不相交的等價(jià)類,使得屬于同一類的拓?fù)淇臻g彼此同胚,屬于不同類的拓?fù)淇臻g彼此不同胚. 拓?fù)淇臻g的某種性質(zhì)P,如果為某一個(gè)拓?fù)淇臻g所具有,則必為與其同胚的任何一個(gè)拓?fù)淇臻g所具有,則稱此性質(zhì)P是一個(gè)拓?fù)洳蛔冃再|(zhì).換言之,拓?fù)洳蛔冃再|(zhì)即為同胚的拓?fù)淇臻g所共有的性質(zhì). 拓?fù)鋵W(xué)的中心任務(wù)便是研究拓?fù)洳蛔冃再|(zhì). 至此我們已經(jīng)做完了將數(shù)學(xué)分析中我們熟知的歐氏空間和歐氏空間之間的連續(xù)函數(shù)的概
28、念,經(jīng)由度量空間和度量空間之間的連續(xù)映射,一直抽象為拓?fù)淇臻g和拓?fù)淇臻g之間的連續(xù)映射這樣一個(gè)在數(shù)學(xué)的歷史上經(jīng)過了很長的一段時(shí)期才完成的工作.在數(shù)學(xué)的發(fā)展過程中對(duì)所研究的問題不斷地加以抽象這種做法是屢見不鮮的,但每一次的抽象都是把握住舊的研究對(duì)象(或其中的某一個(gè)方面)的精粹而進(jìn)行的一次提升,是一個(gè)去粗取精的過程.也正因?yàn)槿绱?,新的概念和理論往往有更多的包容? 拓?fù)鋵W(xué)無疑也是如此,一方面它使我們對(duì)“空間”和“連續(xù)”有更為純正的認(rèn)識(shí),另一方面也包含了無法列入以往的理論中的新的研究對(duì)象(特別是許多無法作為度量空間處理的映射空間).這一切讀者在學(xué)習(xí)的過程中必然會(huì)不斷地加深體會(huì). 作業(yè): P55
29、 2,5,6,8,9,10 2.3 鄰域與鄰域系 本節(jié)重點(diǎn): 掌握鄰域的概念及鄰域的性質(zhì); 掌握連續(xù)映射的兩種定義; 掌握證明開集與鄰域的證明方法(今后證明開集常用定理 我們?cè)跀?shù)學(xué)分析中定義映射的連續(xù)性是從“局部”到“整體”的,也就是說先定義映射在某一點(diǎn)處的連續(xù)性,然后再定義這個(gè)映射本身的連續(xù)性.然而對(duì)于拓?fù)淇臻g的映射而言,先定義映射本身的連續(xù)性更為方便,所以我們先在2.2中做好了;現(xiàn)在輪到給出映射在某一點(diǎn)處的連續(xù)性的定義了.在定理,為此只要有一個(gè)適當(dāng)?shù)姆Q之為“鄰域”的概念,而在2.1中定義度量空間的鄰域時(shí)又只用到“開集”.因此我們先在拓?fù)淇臻g中建立鄰域的概念然后再給出
30、映射在某一點(diǎn)處的連續(xù)性的概念,這些概念的給出一點(diǎn)也不會(huì)使我們感到突然. 定義2.3.1 設(shè)(X,P)是一個(gè)拓?fù)淇臻g,x∈X.如果U是X的一個(gè)子集,滿足條件:存在一個(gè)開集V∈P使得x∈VU,則稱U是點(diǎn)x的一個(gè)鄰域.點(diǎn)x的所有鄰域構(gòu)成的x的子集族稱為點(diǎn)x的鄰域系.易見,如果U是包含著點(diǎn)x的一個(gè)開集,那么它一定是x的一個(gè)鄰域,于是我們稱U是點(diǎn)x的一個(gè)開鄰域. 首先注意,當(dāng)我們把一個(gè)度量空間看作拓?fù)淇臻g時(shí)(這時(shí),空間的拓?fù)涫怯啥攘空T導(dǎo)出來的拓?fù)洌?,一個(gè)集合是否是某一個(gè)點(diǎn)的鄰域,無論是按2.1中的定義或者是按這里的定義,都是一回事. 定理2.3.1 拓?fù)淇臻gX的一個(gè)子集U是開集的充分必要條
31、件是U是它的每一點(diǎn)的鄰域,即只要x∈U,U便是x的一個(gè)鄰域. 證明 定理中條件的必要性是明顯的.以下證明充分性.如果U是空集,當(dāng)然U是一個(gè)開集.下設(shè)U≠.根據(jù)定理中的條件, 使得 故U=,根據(jù)拓?fù)涞亩x,U是一個(gè)開集. 定理 定理2.3.2 設(shè)X是一個(gè)拓?fù)淇臻g.記為點(diǎn)x∈X的鄰域系.則: ?。?)對(duì)于任何x∈X,≠;并且如果U∈,則x∈U; (2)如果U,V∈,則U∩V∈; (3)如果U∈并且UV,則V∈; ?。?)如果U∈,則存在V∈滿足條件:(a)VU和(b)對(duì)于任何y∈V,有V∈. 證明(1)X,X∈P,∴X∈,∴≠且由定義,如果 U∈,則x∈U
32、 (2)設(shè)U,V∈.則存在U.∈P和∈P使得和成立.從而我們有,T,∴U∩V∈ (3)設(shè)U∈,并且 (4)設(shè)U∈.令V∈P滿足條件.V已經(jīng)滿足條件(a),根據(jù)定理2.3.1,它也滿足條件(b). 以下定理表明,我們完全可以從鄰域系的概念出發(fā)來建立拓?fù)淇臻g理論,這種做法在點(diǎn)集拓?fù)浒l(fā)展的早期常被采用.這種做法也許顯得自然一點(diǎn),但不如現(xiàn)在流行的從開集概念出發(fā)定義拓?fù)鋪淼煤?jiǎn)潔. 定理2.3.3 設(shè)X是一個(gè)集合.又設(shè)對(duì)于每一點(diǎn)x∈X指定了x的一個(gè)子集族,并且它們滿足定理,子集族恰是點(diǎn)x在拓?fù)淇臻g(X,P)中的鄰域系.(證明略) 現(xiàn)在我們來將度量空間之間的連續(xù)映射在一點(diǎn)處的連續(xù)性的概念推
33、廣到拓?fù)淇臻g之間的映射中去. 定義2.3.2 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y,x∈X.如果 f(x)∈Y的每一個(gè)鄰域U的原象(U)是x∈X的一個(gè)鄰域,則稱映射f是一個(gè)在點(diǎn)x處連續(xù)的映射,或簡(jiǎn)稱映射f在點(diǎn)x處連續(xù). 與連續(xù)映射的情形一樣,按這種方式定義拓?fù)淇臻g之間的映射在某一點(diǎn)處的連續(xù)性也明顯地是受到了2.1中的定理,如果f: X→Y是從度量空間X到度量空間Y的一個(gè)映射,它在某一點(diǎn)x∈X處連續(xù),那么它也是從拓?fù)淇臻gX到拓?fù)淇臻gY的一個(gè)在點(diǎn)x處連續(xù)的映射;反之亦然. 這里我們也有與定理 定理2.3.4 設(shè)X,Y和Z都是拓?fù)淇臻g.則 (1)恒同映射:X→X在每一點(diǎn)x∈X處連
34、續(xù); (2)如果f:X→Y在點(diǎn)x∈X處連續(xù),g:Y→Z在點(diǎn)f(x)處連續(xù),則gof:X→Z在x處連續(xù). 證明請(qǐng)讀者自己補(bǔ)上. 以下定理則建立了“局部的”連續(xù)性概念和“整體的”連續(xù)性概念之間的聯(lián)系. 定理2.3.5 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y.則映射f連續(xù)當(dāng)且僅當(dāng)對(duì)于每一點(diǎn)x∈X,映射f在點(diǎn)x處連續(xù). 證明必要性:設(shè)映射f連續(xù), 這證明f在點(diǎn)X處連續(xù). 充分性:設(shè)對(duì)于每一點(diǎn)x∈X,映射f在點(diǎn)x處連續(xù). 這就證明了f連續(xù). 作業(yè): 掌握證明一個(gè)子集是鄰域的方法,掌握證明一個(gè)映射是否連續(xù)的方法. 2.4 導(dǎo)集,閉集,閉包 本節(jié)重點(diǎn): 熟練
35、掌握凝聚點(diǎn)、導(dǎo)集、閉集、閉包的概念; 區(qū)別一個(gè)點(diǎn)屬于導(dǎo)集或閉包的概念上的不同; 掌握一個(gè)點(diǎn)屬于導(dǎo)集或閉集或閉包的充要條件; 掌握用“閉集”敘述的連續(xù)映射的充要條件. 如果在一個(gè)拓?fù)淇臻g中給定了一個(gè)子集,那么拓?fù)淇臻g中的每一個(gè)點(diǎn)相對(duì)于這個(gè)子集而言“處境”各自不同,因此可以對(duì)它們進(jìn)行分類處理. 定義2.4.1 設(shè)X是一個(gè)拓?fù)淇臻g,AX.如果點(diǎn)x∈X的每一個(gè)鄰域U中都有A中異于x的點(diǎn),即U∩(A-{x})≠,則稱點(diǎn)x是集合A的一個(gè)凝聚點(diǎn)或極限點(diǎn).集合A的所有凝聚點(diǎn)構(gòu)成的集合稱為A的導(dǎo)集,記作d(A).如果x∈A并且x不是A的凝聚點(diǎn),即存在x的一個(gè)鄰域U使得U∩(A-{x})=,則稱
36、x為A的一個(gè)孤立點(diǎn). 即:(牢記) 在上述定義之中,凝聚點(diǎn)、導(dǎo)集、以及孤立點(diǎn)的定義無一例外地都依賴于它所在的拓?fù)淇臻g的那個(gè)給定的拓?fù)洌虼耍?dāng)你在討論問題時(shí)涉及了多個(gè)拓?fù)涠终劦侥硞€(gè)凝聚點(diǎn)時(shí),你必須明確你所談的凝聚點(diǎn)是相對(duì)于哪個(gè)拓?fù)涠裕蝗菰S產(chǎn)生任何混淆.由于我們將要定義的許多概念絕大多數(shù)都是依賴于給定拓?fù)涞?,因此類似于這里談到的問題今后幾乎時(shí)時(shí)都會(huì)發(fā)生,我們不每次都作類似的注釋,而請(qǐng)讀者自己留心. 某些讀者可能已經(jīng)在諸如歐氏空間中接觸過剛剛定義的這些概念,但絕不要以為對(duì)歐氏空間有效的性質(zhì),例如歐氏空間中凝聚點(diǎn)的性質(zhì),對(duì)一般的拓?fù)淇臻g都有效.以下兩個(gè)例子可以幫助讀者澄清某些不正
37、確的潛在印象. 例2.4.1 離散空間中集合的凝聚點(diǎn)和導(dǎo)集. 設(shè)X是一個(gè)離散空間,A是X中的一個(gè)任意子集.由于X中的每一個(gè)單點(diǎn)集都是開集,因此如果x∈X,則X有一個(gè)鄰域{x},使得,以上論證說明,集合A沒有任何一個(gè)凝聚點(diǎn),從而A的導(dǎo)集是空集,即d(A)=. 例2.4.2 平庸空間中集合的凝聚點(diǎn)和導(dǎo)集. 設(shè)X是一個(gè)平庸空間,A是X中的一個(gè)任意子集.我們分三種情形討論: 第1種情形:A=.這時(shí)A顯然沒有任何一個(gè)凝聚點(diǎn),亦即 d(A)=.(可以參見定理 第2種情形:A是一個(gè)單點(diǎn)集,令 A={}如果x∈X,x≠,點(diǎn)x只有惟一的一個(gè)鄰域X,這時(shí),所以;因此x是A的一個(gè)凝聚點(diǎn),即x∈d
38、(A).然而對(duì)于的惟一鄰域X有:所以 d(A)=X-A. 第3種情形:A包含點(diǎn)多于一個(gè).請(qǐng)讀者自己證明這時(shí)X中的每一個(gè)點(diǎn)都是A的凝聚點(diǎn),即d(A)=X. 定理2.4.1 設(shè)X是一個(gè)拓?fù)淇臻g,AX.則 ?。╨)d()=; ?。?)AB蘊(yùn)涵d(A)d(B); (3)d(A∪B)=d(A)∪d(B); (4)d(d(A))A∪d(A). 證明?。?)由于對(duì)于任何一點(diǎn)x∈X和點(diǎn)x的任何一個(gè)鄰域U, 有U∩ ?。?)設(shè)AB.如果. 這證明了d(A)d(B). (3)根據(jù)(2),因?yàn)锳,BA∪B,所以有d(A),d(B)d(A∪B),從而d(A)∪d(
39、B)d(A∪B). 另一方面,如果 綜上所述,可見(3)成立.(這是證明一個(gè)集合包含于另一個(gè)集合的另一方法:要證,只要證即可.) (4)設(shè): 即(4)成立. 定義2.4.2 設(shè)X是一個(gè)拓?fù)淇臻g,AX.如果A的每一個(gè)凝聚點(diǎn)都屬于A,即d(A)A,則稱A是拓?fù)淇臻gX中的一個(gè)閉集. 例如,根據(jù)例,離散空間中的任何一個(gè)子集都是閉集,而平庸空間中的任何一個(gè)非空的真子集都不是閉集. 定理2.4.2 設(shè)X是一個(gè)拓?fù)淇臻g,AX.則A是一個(gè)閉集,當(dāng)且僅當(dāng)A的補(bǔ)集是一個(gè)開集. 證明 必要性:設(shè)A是一個(gè)閉集 充分性:設(shè): 即A是一個(gè)閉集.
40、 例2.4.3 實(shí)數(shù)空間R中作為閉集的區(qū)間. 設(shè)a,b∈R,a<b.閉區(qū)間[a,b]是實(shí)數(shù)空間R中的一個(gè)閉集,因?yàn)閇a,b]的補(bǔ)集=(-∞,a)∩(b,∞)是一個(gè)開集. 同理,(-∞,a],[b,∞)都是閉集,(-∞,∞)=R顯然更是一個(gè)閉集.然而開區(qū)間(a,b)卻不是閉集,因?yàn)閍是(a,b)的一個(gè)凝聚點(diǎn),但a(a,b).同理區(qū)間(a,b],[a,b),(-∞,a)和(b,∞)都不是閉集. 定理2.4.3 設(shè)X是一個(gè)拓?fù)淇臻g.記F為所有閉集構(gòu)成的族.則: ?。?)X,∈F ?。?)如果A,B∈F,則AUB∈F ?。◤亩绻? (3)如果≠ 在此定理的第(3)條中,
41、我們特別要求≠的原因在于當(dāng) =時(shí)所涉及的交運(yùn)算沒有定義. 證明 根據(jù)定理2.4.2,我們有T={|U∈F}其中,T為X的拓?fù)洌? ?。?)∵X,∈T,∴ ?。?)若A、B∈F ,則 ?。?)令: 定理證明完成. 總結(jié):(1)有限個(gè)開集的交是開集,任意個(gè)開集的并是開集.其余情形不一定. (2)有限個(gè)閉集的并是閉集,任意個(gè)閉集的交是閉集.其余情形不一定. 定義2.4.3 設(shè)X是一個(gè)拓?fù)淇臻g,AX,集合A與A的導(dǎo)集d(A)的并A∪d(A)稱為集合A的閉包,記作或 容易看出,(注意:與x∈d(A)的區(qū)別) 定理2.4.4 拓?fù)淇臻gX的子集A是閉集的充要條
42、件是A= 證明:定理成立是因?yàn)?集合A為閉集當(dāng)且僅當(dāng)d(A)A而這又當(dāng)且僅當(dāng)A=A∪d(A) 定理2.4.5 設(shè)X是一個(gè)拓?fù)淇臻g,則對(duì)于任意A,B∈X,有: 證明(1)成立是由于是閉集. ?。?)成立是根據(jù)閉包的定義. ?。?)成立是因?yàn)? (4)成立是因?yàn)? =A∪d(A)∪d(d(A)) =A∪d(A)= 在第(3)條和第(4)條的證明過程中我們分別用到了定理 定理2.4.6 拓?fù)淇臻gX的任何一個(gè)子集A的閉包都是閉集. 證明根據(jù)定理 定理2.4.7 設(shè)X是一個(gè)拓?fù)淇臻g,F(xiàn)是由空間X中所有的閉某構(gòu)成的族,則對(duì)于X
43、的每一個(gè)子集A,有 即集合A的閉包等于包含A的所有閉集之交. 證明 因?yàn)锳包含于,而后者是一個(gè)閉集,由定理 有 另一方面,由于是一個(gè)閉集,并且,所以 (“交”包含于形成交的任一個(gè)成員) 綜合這兩個(gè)包含關(guān)系,即得所求證的等式. 由定理,X是一個(gè)包含著A的閉集,它又包含于任何一個(gè)包含A的閉集之中,在這種意義下我們說:一個(gè)集合的閉包乃是包含著這個(gè)集合的最小的閉集. 在度量空間中,集合的凝聚點(diǎn),導(dǎo)集和閉包都可以通過度量來刻畫. 定義2.4.5 設(shè)(X,ρ)一個(gè)度量空間.X中的點(diǎn)x到X的非空子集A的距離ρ(x,A)定義為 ρ(x,A)=inf{ρ(x,y)|y∈
44、A} 根據(jù)下確界的性質(zhì)以及鄰域的定義易見:ρ(x,A)=0當(dāng)且僅當(dāng)對(duì)于任意實(shí)數(shù)ε>0,存在y∈A使得ρ(x,y)<ε,換言之即是:對(duì)于任意B(x,ε)有B(x,ε)∩A≠,而這又等價(jià)于:對(duì)于x的任何一個(gè)鄰域U有U∩A≠,應(yīng)用以上討論立即得到. 定理2.4.9 設(shè)A是度量空間(X,ρ)中的一個(gè)非空子集.則 (1)x∈d(A)當(dāng)且僅當(dāng)ρ(x,A-{x})=0; ?。?)x∈當(dāng)且僅當(dāng)ρ(x,A)=0. 以下定理既為連續(xù)映射提供了等價(jià)的定義,也為驗(yàn)證映射的連續(xù)性提供了另外的手段. 定理 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y.則以下條件等價(jià): (l)f是一個(gè)連續(xù)映射; (2)
45、Y中的任何一個(gè)閉集B的原象(B)是一個(gè)閉集; (3)對(duì)于X中的任何一個(gè)子集A,A的閉包的象包含于A的象的閉包,即 ?。? (4)對(duì)于Y中的任何一個(gè)子集B,B的閉包的原象包含B的原象的閉包,即 ?。? 證明?。?)蘊(yùn)涵(2).設(shè)BY是一個(gè)閉集.則 是一個(gè)開集,因此根據(jù)(1),是X中的一個(gè)開集,因此 (B)是X中的一個(gè)閉集. (2)蘊(yùn)涵(3)設(shè)AX.由于f(A), 根據(jù)(2),成立. (3)蘊(yùn)涵(4)設(shè)AY集合(B)X應(yīng)用(3)即得 ?。?)蘊(yùn)涵(l).設(shè)U是Y中的一個(gè)開集.則是Y中的一個(gè)閉集.對(duì)此集合應(yīng)用(4) 可見: . 總結(jié)一下,到目
46、前為止,證明映射連續(xù)的方法有幾種?證明一個(gè)子集是開集,閉集的方法有幾種?如何證明一個(gè)點(diǎn)是某個(gè)子集的凝聚點(diǎn)? 作業(yè): P69 1.2 2.6 基與子基 本節(jié)重點(diǎn): 掌握基與子基的概念,點(diǎn)的鄰域與基之間的關(guān)系; 掌握基、子基與開集的關(guān)系; 掌握如何用基表示開集. 在討論度量空間的拓?fù)涞臅r(shí)候,球形鄰域起著基本性的重要作用.一方面,每一個(gè)球形鄰域都是開集,從而任意多個(gè)球形鄰域的并也是開集;另一方面,假設(shè)U是度量空間X中的一個(gè)開集.則對(duì)于每一個(gè)x∈U有一個(gè)球形鄰域B(x,ε)U,因此.這就是說,一個(gè)集合是某度量空間中的一個(gè)開集當(dāng)且僅當(dāng)它是這個(gè)度量
47、空間中的若干個(gè)球形鄰域的并.因此我們可以說,度量空間的拓?fù)涫怯伤乃械那蛐梧徲蛲ㄟ^集族求并這一運(yùn)算“產(chǎn)生”出來的.留意了這個(gè)事實(shí),下面在拓?fù)淇臻g中提出“基”這個(gè)概念就不會(huì)感到突然了. 定義2.6.1 設(shè)(X,T)是一個(gè)拓?fù)淇臻g,B是T的一個(gè)子族.如果T中的每一個(gè)元素(即拓?fù)淇臻gX中的每一個(gè)開集)是B中某些元素的并,即對(duì)于每一個(gè)U∈T,存在使得 則稱B是拓?fù)銽的一個(gè)基,或稱B是拓?fù)淇臻gX的一個(gè)基. 按照本節(jié)開頭所作的論證立即可得: 定理2.6.1 一個(gè)度量空間中的所有球形鄰域構(gòu)成的集族是這個(gè)度量空間作為拓?fù)淇臻g時(shí)的一個(gè)基. 特別地,由于實(shí)數(shù)空間R中所有開區(qū)間構(gòu)成的族
48、就是它的所有球形鄰域構(gòu)成的族,因此所有開區(qū)間構(gòu)成的族是實(shí)數(shù)空間R的一個(gè)基. 至于離散空間,它有一個(gè)最簡(jiǎn)單的基,這個(gè)基由所有的單點(diǎn)子集構(gòu)成. 下面的定理為判定某一個(gè)開集族是否是給定的拓?fù)涞囊粋€(gè)基提供了一個(gè)易于驗(yàn)證的條件. 定理2.6.2 設(shè)B是拓?fù)淇臻g(X,T)的一個(gè)開集族(即),則B是拓?fù)淇臻gX的一個(gè)基當(dāng)且僅當(dāng)對(duì)于每一個(gè)x∈X和x的每一個(gè)鄰域. 證明 設(shè)B是X的一個(gè)基,則 根據(jù)基的定義, 可知存在 這證明B滿足定理中的條件. 另一方面,設(shè)定理中的條件成立.如果U是X中的一個(gè)開集,則對(duì)于每一個(gè)x∈U, 因此,U是B中某些元素之并,從而B是X的一個(gè)基. 在度量空
49、間中,通過球形鄰域確定了度量空間的拓?fù)?,這個(gè)拓?fù)湟匀w球形鄰域構(gòu)成的集族作為基.是否一個(gè)集合的每一個(gè)子集族都可以確定一個(gè)拓?fù)湟运鼮榛??答案是否定的.以下定理告訴我們一個(gè)集合的什么樣的子集族可以成為它的某一個(gè)拓?fù)涞幕? 定理2.6.3 設(shè)X是一個(gè)集合,B是集合X的一個(gè)子集族(即 BP(X)).如果B滿足條件: ?。?); ?。?)如果,則對(duì)于任何 則X的子集族 T={UX|存在使得} 是集合X的惟一的一個(gè)以B為基的拓?fù)?;反之,如果X的一個(gè)子集族B是X的某一個(gè)拓?fù)涞幕?,則B一定滿足條件(l)和(2). 值得注意的是,如果集合X的子集族B滿足條件:對(duì)于任意 ∈B,有
50、∈B.這時(shí),B必然滿足條件(2).這種情形經(jīng)常遇到. 證明 設(shè)X的子集族B滿足條件(l)和(2).我們先驗(yàn)證定理中給出的T是X的一個(gè)拓?fù)洌? (1)根據(jù)條件(1),X∈T;由于,而B 所以∈T. ?。?)我們先驗(yàn)證:如果∈B,則∈T這是因?yàn)楦鶕?jù)條件(2),對(duì)于每一個(gè)x∈,存在, 由于 現(xiàn)在設(shè) 成立.因此 根據(jù)前說,上式中最后那個(gè)并集中的每一項(xiàng)都是B中某些元素之并,所以也是B中某些元素之并,因此 ?。?)設(shè)則 以上證明了T是集合X的一個(gè)拓?fù)洌鶕?jù)T的定義立即可見B是拓?fù)銽的一個(gè)基. 假設(shè)集合X還有一個(gè)拓?fù)湟訠為它的一個(gè)基.根據(jù)基的定義,任何一
51、個(gè)A必為B中某些元素的并,所以A∈T 這證明T,另一方面,由于B,所以如果A∈T則A是B中的某些元素之并,因此也是 中某些元素之并;由于是一個(gè)拓?fù)?,所以A∈這又證明了T.因此T=.這說明以B為基的拓?fù)涫俏┮坏模? 最后證明定理的后半段.設(shè)B是X的某一個(gè)拓?fù)銽*的一個(gè)基.由 X∈T*可知X必為B中的某些元素的并,故必為集族B之并.因此(1)成立.設(shè)和x∈.由于BT*.是x的一個(gè)開鄰域,根據(jù)定理2.6.2,存在使得 ,這證明條件(2)成立. 在定義基的過程中我們只是用到了集族的并運(yùn)算,如果再考慮集合的有限交運(yùn)算(注意拓?fù)渲皇菍?duì)有限交封閉的,所以只考慮有限交),便得到“子基”這個(gè)概念.
52、 定義2.6.2 設(shè)(X,T)是一個(gè)拓?fù)淇臻g,是T的一個(gè)子族.如果的所有非空有限于族之交構(gòu)成的集族,即 是拓?fù)銽的一個(gè)基,則稱集族 是拓?fù)銽的一個(gè)子基,或稱集族是拓?fù)淇臻gX的一個(gè)子基. 例2.6.2 實(shí)數(shù)空間R的一個(gè)子基. 實(shí)數(shù)集合R的一個(gè)子集族 ={(a,∞)|a∈R}∪{(-∞,b)|b∈R} 是實(shí)數(shù)空間R的一個(gè)子基.這是因?yàn)槭菍?shí)數(shù)空間的一個(gè)開集族,并且的每一個(gè)有限非空子族之交的全體構(gòu)成的集族恰好就是所有有限開區(qū)間構(gòu)成的族并上再并上{},顯然它是實(shí)數(shù)空間R的一個(gè)基. 定理2.6.4 設(shè)X是一個(gè)集合,是X的一個(gè)子集族(即 P(X)).如果則X有惟一的一個(gè)拓?fù)銽
53、以為子基.并且若令 則 證明 令B和T如定理中.容易驗(yàn)證B滿足定理,因此根據(jù)該定理,B是T的一個(gè)基,所以 是T的一個(gè)子基. 如果是X的一個(gè)拓?fù)洌詾橐粋€(gè)子基,則根據(jù)子基的定義,以B為基.根據(jù)定理,我們有 =T 映射的連續(xù)性可以通過基或子基來驗(yàn)證.一般說來,基或子基的基數(shù)不大于拓?fù)涞幕鶖?shù),所以通過基或子基來驗(yàn)證映射的連續(xù)性,有時(shí)可能會(huì)帶來很大的方便. 定理2.6.5 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y.則以下條件等價(jià): ?。╨)f連續(xù); ?。?)拓?fù)淇臻gY有一個(gè)基B,使得對(duì)于任何一個(gè)B∈B,(B)是X中的一個(gè)開集; (3)Y有一個(gè)子基,使得對(duì)于任何一個(gè)S∈
54、原象(S)是X中的一個(gè)開集. 證明 條件(l)蘊(yùn)涵(3)是顯然的,因?yàn)閅的拓?fù)浔旧肀闶荵的一個(gè)子基. 條件(3)蘊(yùn)涵(2).設(shè)是Y的拓?fù)涞囊粋€(gè)子基,滿足(3)中的要求.根據(jù)定義, 是Y的拓?fù)涞囊粋€(gè)基. 對(duì)于任何,i=1,2,…,n,其中n∈,我們有 它是X中n∈個(gè)開集之交,因此是X中的一個(gè)開集. 條件(2)蘊(yùn)涵(1).設(shè)B是Y的拓?fù)涞囊粋€(gè)基,它滿足(2)中的要求.如果U是Y中的一個(gè)開集,則 是X中一族開集之并,所以是X中的一個(gè)開集.這證明f連續(xù). 對(duì)于局部情形,也有類似于基和子基的概念. 定義2.6.3 設(shè)X是一個(gè)拓?fù)淇臻g,
55、x∈X.記為x的鄰域系.的子族如果滿足條件:對(duì)于每一個(gè)U∈,存在V∈,使得 VU,則稱是點(diǎn)x的鄰域系的一個(gè)基,或簡(jiǎn)稱為點(diǎn)x的一個(gè)鄰域基. 的子族如果滿足條件:每一個(gè)有限非空子族之交的全體構(gòu)成的集族,即是x的一個(gè)鄰域基,則稱此是點(diǎn)x的鄰域系的一個(gè)子基,或簡(jiǎn)稱為點(diǎn)x的一個(gè)鄰域子基. 顯然,在度量空間中以某一個(gè)點(diǎn)為中心的全體球形鄰域是這個(gè)點(diǎn)的一個(gè)鄰域基;以某一個(gè)點(diǎn)為中心的全體以有理數(shù)為半徑的球形鄰域也是這個(gè)點(diǎn)的一個(gè)鄰域基. 鄰域基和鄰域子基的概念可以用來驗(yàn)證映射在一點(diǎn)處的連續(xù)性. 定理2.6.6 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y,x∈X. 則以下條件等價(jià): ?。?)f在
56、點(diǎn)x處連續(xù); (2)f(x)有一個(gè)鄰域基,使得對(duì)于任何V∈;,原象(V)是x的一個(gè)鄰域; ?。?)f(x)有一個(gè)鄰域子基 ,使得對(duì)于任何W∈,原象(W)是x的一個(gè)鄰域. 證明(略) 基與鄰域基,子基與鄰域子基有以下關(guān)聯(lián). 定理2.6.7 設(shè)X是一個(gè)拓?fù)淇臻g,x∈X.則 ?。?)如果B是X的一個(gè)基,則 ={B∈B|x∈B} 是點(diǎn)x的一個(gè)鄰域基; ?。?)如果是X的一個(gè)子基,則 ={S∈|x∈S} 是點(diǎn)x的一個(gè)鄰域子基. 證明(略) 作業(yè): P82 1.4.7 2.7 拓?fù)淇臻g中的序列 本節(jié)重點(diǎn):
57、 掌握拓?fù)淇臻g中序列的概念,及極限點(diǎn)的概念; 掌握數(shù)學(xué)分析中的序列的性質(zhì)與拓?fù)淇臻g中的序列的性質(zhì)有何不同; 掌握不可數(shù)集中序列的特性; 掌握點(diǎn)集的凝聚點(diǎn)與序列的極限點(diǎn)的關(guān)系. 在讀者熟知的數(shù)學(xué)分析課程中,往往用序列收斂的概念作為出發(fā)點(diǎn)來刻畫集合的凝聚點(diǎn),函數(shù)在某一點(diǎn)處的連續(xù)性等等.在這一節(jié)我們便會(huì)看到這種做法在一般的拓?fù)淇臻g中并不可行;而要使得它變?yōu)榭尚械模瑒t要對(duì)拓?fù)淇臻g加以適當(dāng)?shù)南拗疲覀儗碓傺芯窟@種限制加到什么程度為合適. 定義2.7.1 設(shè)X是一個(gè)拓?fù)淇臻g.每一個(gè)映射S:→X,叫做X中的一個(gè)序列.我們常將序列S記作;或者.,或者干脆記作,其中.有時(shí)我們也將記號(hào)簡(jiǎn)化為{
58、},但這時(shí)要警惕不要與單點(diǎn)集相混. 拓?fù)淇臻gX中的一個(gè)序列實(shí)際上就是在X中按先后次序取到的一串點(diǎn),這些點(diǎn)可能重復(fù).因此一個(gè)序列 可以僅由有限個(gè)點(diǎn)組成,當(dāng)這個(gè)集合是單點(diǎn)集時(shí),我們稱序列為一個(gè)常值序列. 定義2.7.2 設(shè)是拓?fù)淇臻gX中的一個(gè)序列,x∈X.如果對(duì)于x的每一個(gè)鄰域U,存在M∈,使得當(dāng)i>M時(shí)有xi∈U,則稱點(diǎn)x是序列 ,的一個(gè)極限點(diǎn)(或極限),也稱為序列收斂于x,記作 lim=x或→x(i→∞) 如果序列至少有一個(gè)極限,則稱這個(gè)序列是一個(gè)收斂序列. 拓?fù)淇臻g中序列的收斂性質(zhì)與以前我們?cè)跀?shù)學(xué)分析中熟悉的有很大的差別.例如,容易驗(yàn)證平庸空間中任何一個(gè)序列都收斂,并且收
59、斂于這個(gè)空間中的任何一個(gè)點(diǎn).這時(shí)極限的惟一性當(dāng)然無法保證了. 定義2.7.3 設(shè)X是一個(gè)拓?fù)淇臻g,S,:→X是X中的兩個(gè)序列.如果存在一個(gè)嚴(yán)格遞增的映射N:→(即對(duì)于任意 ,如果,則有N()<N(),使得 =SoN,則稱序列是序列S的一個(gè)子序列. 假如我們將此定義中的序列S記作那么序列自然可以記作,也就是說,序列第i個(gè)點(diǎn)恰是序列第N(i)個(gè)點(diǎn). 我們已經(jīng)看到,我們以前熟悉的序列的性質(zhì)有許多對(duì)于拓?fù)淇臻g中的序列是不適合的.但總有一些性質(zhì)還保留著,其中最主要的可見于以下三個(gè)定理中. 定理2.7.1 設(shè)是拓?fù)淇臻gX中的一個(gè)序列.則 ?。?)如果是一個(gè)常值序列,即對(duì)于某一個(gè)x∈
60、X,有=x,i∈,則lim=x; ?。?)如果序列收斂于x∈X,則序列的每一個(gè)子序列也收斂于x. 證明(略). 定理2.7.2 設(shè)X是一個(gè)拓?fù)淇臻g,A X,x∈X.如果有一個(gè)序列 在A-{x}中(此意即,對(duì)于每一個(gè)i∈有∈A-{x}),并且收斂于x,則x是集合A的一個(gè)凝聚點(diǎn). 證明設(shè)序列在A-{x}中并且收斂于x.如果U是x的一個(gè)鄰域,則存在M∈使得U,因此U∩(A-{x}),從而U∩(A-{x})≠.這證明x是A的一個(gè)凝聚點(diǎn). 例2.7.1 定理 設(shè)X是一個(gè)不可數(shù)集,考慮它的拓?fù)錇榭蓴?shù)補(bǔ)拓?fù)?,這時(shí)X的一個(gè)子集是閉集當(dāng)且僅當(dāng)或者它是X本身或者它是一個(gè)可數(shù)集.我們先指出可數(shù)
61、補(bǔ)空間X的兩個(gè)特征: (1)X中的一個(gè)序列收斂于x∈X的充分必要條件是存在M∈使得當(dāng)i>M時(shí),=x. 條件的充分性是顯然的.以下證明必要性.設(shè)lim=x由于集合是一個(gè)可數(shù)集,因此D的補(bǔ)集是x的一個(gè)鄰域,從而存在M∈使得當(dāng)i>M時(shí)有,此時(shí) 必有=x. (2)如果A是X的一個(gè)不可數(shù)子集,則集合A的導(dǎo)集d(A)=X. 這是因?yàn)閄中任何一個(gè)點(diǎn)的任何一個(gè)鄰域中都包含著某一個(gè)非空開集,而拓?fù)淇臻gX中的每一個(gè)非空開集都是一個(gè)可數(shù)集的補(bǔ)集,所以任何一個(gè)點(diǎn)的任何一個(gè)鄰域都是某一個(gè)可數(shù)集的補(bǔ)集.由于A是一個(gè)不可數(shù)集,它將與任何一個(gè)點(diǎn)的任何一個(gè)鄰域有非空的交,因此X中任何一個(gè)點(diǎn)都是集合A的凝聚點(diǎn),即d(A)
62、=X. 現(xiàn)在我們來指出,在這個(gè)拓?fù)淇臻gX中,定理,它是一個(gè)不可數(shù)集.根據(jù)(2),我們有∈d(A),也就是說, 是A的一個(gè)凝聚點(diǎn);然而根據(jù)(1),在A(=X-{})中不可能有序列收斂于 這個(gè)例子表明,在一般的拓?fù)淇臻g中不能像在數(shù)學(xué)分析中那樣通過序列收斂的性質(zhì)來刻畫凝聚點(diǎn). 定理2.7.3 設(shè)X和Y是兩個(gè)拓?fù)淇臻g,f:X→Y.則 (1)如果f在點(diǎn)∈X處連續(xù),則X中的一個(gè)序列收斂于蘊(yùn)涵著Y中的序列收斂于f(); (2)如果f連續(xù),則X中的一個(gè)序列收斂于x∈X蘊(yùn)涵著Y中的序列收斂于f(x). 證明 (1)設(shè)f在點(diǎn)處連續(xù),是X中的一個(gè)收斂于的序列.如果U是f()的一個(gè)鄰域,則(U)是
63、的一個(gè)鄰域.這時(shí)存在M∈使得當(dāng)i>M時(shí)有. (2)成立是因?yàn)檫B續(xù)即在每一點(diǎn)處連續(xù)(參見定理2.3.5). 例2.7.2 定理 現(xiàn)在設(shè)X是實(shí)數(shù)集合,并且考慮它的拓?fù)錇榭蓴?shù)補(bǔ)拓?fù)洌紤]從拓?fù)淇臻gX到實(shí)數(shù)空間R的恒同映射i:X→R.由于如果拓?fù)淇臻gX中的序列收斂于x∈X,則有:存在M∈使得當(dāng)i>M時(shí)有=x,因此此時(shí)序列在實(shí)數(shù)空間R中也收斂于x.這就是說映射i滿足定理 ,只要不是R本身,那么(U)=U在拓?fù)淇臻gX中不能包含任何一個(gè)開集(因?yàn)閁的補(bǔ)集不是可數(shù)集),也就不能作為任何一個(gè)點(diǎn)的鄰域. 上述例子表明,在一般的拓?fù)淇臻g中不能像在數(shù)學(xué)分析中那樣通過序列收斂的性質(zhì)來刻畫映射的連續(xù)性.
64、 至于在什么樣的條件下,定理,也就是說可以用序列收斂的性質(zhì)來刻畫凝聚點(diǎn)和映射的連續(xù)性,我們今后還要進(jìn)行進(jìn)一步的研究. 此外,在度量空間中,序列的收斂可以通過度量來加以描述. 定理2.7.4 設(shè)(X,ρ)是一個(gè)度量空間,是X中的一個(gè)序列,x∈X.則以下條件等價(jià): ?。?)序列收斂于x; (2)對(duì)于任意給定的實(shí)數(shù)ε>0,存在N∈使得當(dāng)i>N時(shí) ρ(,x)<ε; (3)limρ(,x)=0(i→∞). 證明(略) 作業(yè): P.88 1,3(記住習(xí)題3的結(jié)論) 本章總結(jié): 1.本章的研究對(duì)象是一個(gè)任意的集合,在其上定義了一個(gè)“開集”族結(jié)構(gòu)(為了
65、能夠運(yùn)算,所定義的開集必須滿足P.48定義2.2.1).這個(gè)集合就成了“拓?fù)淇臻g”.(注意它與通常的實(shí)數(shù)空間不同) 2.在拓?fù)淇臻g中由開集衍生定義出鄰域,閉集,閉包,導(dǎo)集,序列等概念.(要掌握這些概念的等價(jià)命題) 3.為了進(jìn)一步研究開集的結(jié)構(gòu),又引進(jìn)了基與子基的概念.(要掌握基與開集的關(guān)系) 4.此時(shí)拓?fù)淇臻g的序列有哪些性質(zhì)?與實(shí)數(shù)空間的序列有哪些不同? 5.兩個(gè)空間的關(guān)系用一個(gè)映射來聯(lián)系,怎樣的映射是連續(xù)的?有幾種方法可以判斷映射是連續(xù)的? 6.為了向?qū)崝?shù)空間看齊,可以在集合中引進(jìn)“度量”這個(gè)概念.度量空間有哪些性質(zhì)? 按以上這些要點(diǎn)復(fù)習(xí)一遍.然后記住以下幾個(gè)常見的空間的性質(zhì): 實(shí)數(shù)空間,平庸空間,離散空間,有限補(bǔ)空間,可數(shù)補(bǔ)空間; 開集,閉集,鄰域是怎樣的? 39
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案