2019屆九年級數(shù)學(xué)下冊 第一章 1.4 二次函數(shù)與一元二次方程的聯(lián)系練習(xí) (新版)湘教版.doc
《2019屆九年級數(shù)學(xué)下冊 第一章 1.4 二次函數(shù)與一元二次方程的聯(lián)系練習(xí) (新版)湘教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019屆九年級數(shù)學(xué)下冊 第一章 1.4 二次函數(shù)與一元二次方程的聯(lián)系練習(xí) (新版)湘教版.doc(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1.4 二次函數(shù)與一元二次方程的聯(lián)系 基礎(chǔ)題 知識點(diǎn)1 二次函數(shù)與一元二次方程的聯(lián)系 1.拋物線y=-3x2-x+4與坐標(biāo)軸的交點(diǎn)的個數(shù)是(A) A.3 B.2 C.1 D.0 2.小蘭畫了一個函數(shù)y=x2+ax+b的圖象如圖,則關(guān)于x的方程x2+ax+b=0的解是(D) A.無解 B.x=1 C.x=-4 D.x=-1或x=4 3.(xx襄陽)已知二次函數(shù)y=x2-x+m-1的圖象與x軸有交點(diǎn),則m的取值范圍是(A) A.m≤5 B.m≥2 C.m<5 D.m>2 4.(教材P27練習(xí)T1變式)拋物線y=3x2+x-10與x軸有無交點(diǎn)?若無,說出理由,若有,求出交點(diǎn)坐標(biāo). 解:令y=0,得3x2+x-10=0, ∴Δ=12-43(-10)=121>0. ∴拋物線y=3x2+x-10與x軸有交點(diǎn). ∵3x2+x-10=0,解得x1=-2,x2=, ∴拋物線y=3x2+x-10與x軸的交點(diǎn)坐標(biāo)是(-2,0),(,0). 知識點(diǎn)2 利用二次函數(shù)求一元二次方程的根的近似值 5.根據(jù)下列表格的對應(yīng)值,判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))一個解的范圍是(C) x 3.23 3.24 3.25 3.26 ax2+bx+c -0.06 -0.02 0.03 0.09 A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26 6.(教材P27例習(xí)T2變式)用圖象法求一元二次方程2x2-4x-1=0的近似解.(精確到0.1) 解:設(shè)y=2x2-4x-1. 畫出拋物線y=2x2-4x-1的圖象如圖所示. 由圖象知,當(dāng)x≈2.2或x≈-0.2時(shí),y=0. ∴方程2x2-4x-1=0的近似解為x1≈2.2,x2≈-0.2. 知識點(diǎn)3 二次函數(shù)與一元二次方程的聯(lián)系的實(shí)際應(yīng)用 7.(教材P26例2變式)教練對小明推鉛球的錄像進(jìn)行技術(shù)分析,發(fā)現(xiàn)鉛球行進(jìn)高度y(m)與水平距離x(m)之間的關(guān)系為y=-(x-4)2+3,由此可知鉛球推出的距離是10m. 8.一個人的血壓與其年齡及性別有關(guān),對于女性來說,正常的收縮壓p(毫米汞柱)與年齡x(歲)大致滿足關(guān)系:p=0.01x2-0.05x+107;對于男性來說,正常的收縮壓p(毫米汞柱)與年齡x(歲)大致滿足關(guān)系:p=0.06x2-0.02x+120. (1)你是一個________生(填“男”或“女”),你的年齡是________歲,請利用公式計(jì)算你的收縮壓; (2)如果一個男性的收縮壓為137毫米汞柱,那么他的年齡應(yīng)該是多少? 解:(1)根據(jù)實(shí)際情況填寫,略. (2)解方程137=0.06x2-0.02x+120,得 x1=17,x2=-(舍去). ∴他的年齡應(yīng)該是17歲. 中檔題 9.二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的方程ax2+bx+c-3=0的根的情況是(A) A.有兩個不相等的實(shí)數(shù)根 B.有兩個異號實(shí)數(shù)根 C.有兩個相等的實(shí)數(shù) D.無實(shí)數(shù)根 10.(xx孝感)如圖,拋物線y=ax2與直線y=bx+c的兩個交點(diǎn)坐標(biāo)分別為A(-2,4),B(1,1),則方程ax2=bx+c的解是x1=-2,x2=1. 11.已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,解決下列問題: (1)求關(guān)于x的一元二次方程-x2+bx+c=0的解; (2)求此拋物線的函數(shù)表達(dá)式; (3)當(dāng)x為值時(shí),y<0? 解:(1)觀察圖象可看出拋物線與x 軸交于(-1,0)、(3,0)兩點(diǎn), ∴方程的解為x1=-1,x2=3. (2)設(shè)拋物線表達(dá)式為y=-(x-1)2+k, ∵拋物線與x軸交于點(diǎn)(3,0), ∴-(3-1)2+k=0,解得k=4. ∴拋物線表達(dá)式為y=-(x-1)2+4,即拋物線表達(dá)式為y=-x2+2x+3. (3)若y<0,則函數(shù)的圖象在x軸的下方,由函數(shù)的圖象可知:x>3或x<-1. 12.(xx黃岡)已知直線l:y=kx+1與拋物線y=x2-4x. (1)求證:直線l與該拋物線總有兩個交點(diǎn); (2)設(shè)直線l與該拋物線兩交點(diǎn)為A,B,O為原點(diǎn),當(dāng)k=-2時(shí),求△OAB的面積. 解:(1)證明:令x2-4x=kx+1,則x2-(4+k)x-1=0. ∵Δ=(4+k)2+4>0, ∴直線l與該拋物線總有兩個交點(diǎn). (2)設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),直線l與y軸交點(diǎn)為C(0,1). 由(1)知x1+x2=4+k=2,x1x2=-1. ∴(x1-x2)2=(x1+x2)2-4x1x2=4+4=8,|x1-x2|=2. ∴S△OAB=OC|x1-x2|=12=. 綜合題 13.把一個足球垂直于水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t-5t2(0≤t≤4). (1)當(dāng)t=3時(shí),求足球距離地面的高度; (2)當(dāng)足球距離地面的高度為10米時(shí),求t的值; (3)若存在實(shí)數(shù)t1和t2(t1≠t2),當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍. 解:(1)當(dāng)t=3時(shí),h=20t-5t2=203-532=60-59=60-45=15(米), ∴當(dāng)t=3時(shí),足球距離地面的高度為15米. (2)當(dāng)h=10時(shí),20t-5t2=10,t2-4t+2=0,解得t=2,∴當(dāng)足球距離地面的高度為10米時(shí),t的值為2. (3)∵h(yuǎn)=20t-5t2=-5(t2-4t)=-5(t2-4t+4-4)=-5(t-2)2+20, ∴拋物線h=20t-5t2的頂點(diǎn)坐標(biāo)為(2,20). ∵存在實(shí)數(shù)t1和t2(t1≠t2),當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m米, ∴m的取值范圍是0≤m<20.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019屆九年級數(shù)學(xué)下冊 第一章 1.4 二次函數(shù)與一元二次方程的聯(lián)系練習(xí) 新版湘教版 2019 九年級 數(shù)學(xué) 下冊 二次 函數(shù) 一元 二次方程 聯(lián)系 練習(xí) 新版 湘教版
鏈接地址:http://m.jqnhouse.com/p-3702809.html