2020版高中數(shù)學(xué) 第二章 數(shù)列 2.2.2 等差數(shù)列的前n項(xiàng)和(第1課時)等差數(shù)列的前n項(xiàng)和公式學(xué)案(含解析)新人教B版必修5.docx
《2020版高中數(shù)學(xué) 第二章 數(shù)列 2.2.2 等差數(shù)列的前n項(xiàng)和(第1課時)等差數(shù)列的前n項(xiàng)和公式學(xué)案(含解析)新人教B版必修5.docx》由會員分享,可在線閱讀,更多相關(guān)《2020版高中數(shù)學(xué) 第二章 數(shù)列 2.2.2 等差數(shù)列的前n項(xiàng)和(第1課時)等差數(shù)列的前n項(xiàng)和公式學(xué)案(含解析)新人教B版必修5.docx(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第1課時 等差數(shù)列的前n項(xiàng)和公式 學(xué)習(xí)目標(biāo) 1.掌握等差數(shù)列前n項(xiàng)和公式及其獲取思路.2.熟練掌握等差數(shù)列的五個量a1,d,n,an,Sn的關(guān)系,能夠由其中三個求另外兩個.3.已知數(shù)列{an}的前n項(xiàng)和公式求通項(xiàng)an. 知識點(diǎn)一 等差數(shù)列的前n項(xiàng)和 1.定義:對于數(shù)列{an},一般地,稱a1+a2+a3+…+an為數(shù)列{an}的前n項(xiàng)和. 2.表示:常用符號Sn表示,即Sn=a1+a2+a3+…+an. 知識點(diǎn)二 等差數(shù)列前n項(xiàng)和公式 等差數(shù)列的前n項(xiàng)和公式 已知量 首項(xiàng),末項(xiàng)與項(xiàng)數(shù) 首項(xiàng),公差與項(xiàng)數(shù) 求和公式 Sn= Sn=na1+d 知識點(diǎn)三 a1,d,n,an,Sn知三求二 1.在等差數(shù)列{an}中,an=a1+(n-1)d,Sn=或Sn=na1+d. 兩個公式共涉及a1,d,n,an及Sn五個基本量,它們分別表示等差數(shù)列的首項(xiàng),公差,項(xiàng)數(shù),項(xiàng)和前n項(xiàng)和. 2.依據(jù)方程的思想,在等差數(shù)列前n項(xiàng)和公式中已知其中三個量可求另外兩個量,即“知三求二”. 知識點(diǎn)四 數(shù)列中an與Sn的關(guān)系 對于一般數(shù)列{an},設(shè)其前n項(xiàng)和為Sn, 則有an= 特別提醒:(1)這一關(guān)系對任何數(shù)列都適用. (2)若在由an=Sn-Sn-1(n≥2)求得的通項(xiàng)公式中,令n=1求得a1與利用a1=S1求得的a1相同,則說明an=Sn-Sn-1(n≥2)所得通項(xiàng)公式也適合n=1的情況,數(shù)列的通項(xiàng)公式用an=Sn-Sn-1表示. 若在由an=Sn-Sn-1(n≥2)求得的通項(xiàng)公式中,令n=1求得的a1與利用a1=S1求得的a1不相同,則說明an=Sn-Sn-1(n≥2)所得通項(xiàng)公式不適合n=1的情況,數(shù)列的通項(xiàng)公式采用分段形式. 1.若數(shù)列{an}的前n項(xiàng)和為Sn,則S1=a1.( √ ) 2.若數(shù)列{an}的前n項(xiàng)和為Sn,則an=Sn-Sn-1,n∈N+.( ) 3.等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法是倒序相加法.( √ ) 4.1+2+3+…+100=.( √ ) 題型一 等差數(shù)列前n項(xiàng)和公式的基本運(yùn)算 例1 在等差數(shù)列{an}中: (1)已知a5+a10=58,a4+a9=50,求S10; (2)已知S7=42,Sn=510,an-3=45,求n. 解 (1)方法一 由已知條件得 解得 ∴S10=10a1+d=103+4=210. 方法二 由已知條件得 ∴a1+a10=42, ∴S10==542=210. (2)S7==7a4=42, ∴a4=6. ∴Sn====510. ∴n=20. 反思感悟 (1)在解決與等差數(shù)列前n項(xiàng)和有關(guān)的問題時,要注意方程思想和整體思想的運(yùn)用. (2)構(gòu)成等差數(shù)列前n項(xiàng)和公式的元素有a1,d,n,an,Sn,知其三能求其二. 跟蹤訓(xùn)練1 在等差數(shù)列{an}中,已知d=2,an=11,Sn=35,求a1和n. 解 由得 解方程組得或 題型二 由數(shù)列{an}的前n項(xiàng)和Sn求an 例2 已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+n,求這個數(shù)列的通項(xiàng)公式.這個數(shù)列是等差數(shù)列嗎?如果是,它的首項(xiàng)與公差分別是什么? 解 根據(jù)Sn=a1+a2+…+an-1+an可知 Sn-1=a1+a2+…+an-1(n≥2,n∈N+), 當(dāng)n≥2時,an=Sn-Sn-1=n2+n- =2n-, ① 當(dāng)n=1時,a1=S1=12+1=,也滿足①式. ∴數(shù)列{an}的通項(xiàng)公式為an=2n-,n∈N+. ∵an+1-an=2(n+1)--=2, 故數(shù)列{an}是以為首項(xiàng),2為公差的等差數(shù)列. 引申探究 若將本例中前n項(xiàng)和改為Sn=n2+n+1,求通項(xiàng)公式. 解 當(dāng)n≥2時,an=Sn-Sn-1 =- =2n-. ① 當(dāng)n=1時,a1=S1=12++1=不符合①式. ∴an= 反思感悟 已知前n項(xiàng)和Sn求通項(xiàng)an,先由n=1時,a1=S1求得a1,再由n≥2時,an=Sn-Sn-1求得an,最后驗(yàn)證a1是否符合an,若符合則統(tǒng)一用一個解析式表示,不符合則分段表示. 跟蹤訓(xùn)練2 已知數(shù)列{an}的前n項(xiàng)和Sn=3n,求an. 解 當(dāng)n=1時,a1=S1=3; 當(dāng)n≥2時,an=Sn-Sn-1=3n-3n-1=23n-1. 當(dāng)n=1時,代入an=23n-1得a1=2≠3. ∴an= 題型三 等差數(shù)列在實(shí)際生活中的應(yīng)用 例3 某人用分期付款的方式購買一件家電,價格為1150元,購買當(dāng)天先付150元,以后每月的這一天都交付50元,并加付欠款利息,月利率為1%.若交付150元后的一個月開始算分期付款的第一個月,則分期付款的第10個月該交付多少錢?全部貸款付清后,買這件家電實(shí)際花費(fèi)多少錢? 解 設(shè)每次交款數(shù)額依次為a1,a2,…,a20, 則a1=50+10001%=60, a2=50+(1000-50)1%=59.5, … a10=50+(1000-950)1%=55.5, 即第10個月應(yīng)付款55.5元. 由于{an}是以60為首項(xiàng),以-0.5為公差的等差數(shù)列, 所以有S20=20=1105, 即全部付清后實(shí)際付款1105+150=1255(元). 反思感悟 建立等差數(shù)列的模型時,要根據(jù)題意找準(zhǔn)首項(xiàng)、公差和項(xiàng)數(shù)或者首項(xiàng)、末項(xiàng)和項(xiàng)數(shù). 跟蹤訓(xùn)練3 甲、乙兩物體分別從相距70m的兩處同時相向運(yùn)動,甲第1分鐘走2m,以后每分鐘比前1分鐘多走1m,乙每分鐘走5m. (1)甲、乙開始運(yùn)動后幾分鐘相遇? (2)如果甲、乙到達(dá)對方起點(diǎn)后立即返回,甲繼續(xù)每分鐘比前1分鐘多走1m,乙繼續(xù)每分鐘走5m,那么開始運(yùn)動幾分鐘后第二次相遇? 解 (1)設(shè)n分鐘后兩人第1次相遇,由題意, 得2n++5n=70,整理得n2+13n-140=0. 解得n=7,n=-20(舍去). 所以第1次相遇是在開始運(yùn)動后7分鐘. (2)設(shè)n分鐘后第2次相遇,由題意, 得2n++5n=370, 整理得n2+13n-420=0. 解得n=15,n=-28(舍去). 所以第2次相遇是在開始運(yùn)動后15分鐘. 1.已知等差數(shù)列{an}滿足a1=1,am=99,d=2,則其前m項(xiàng)和Sm等于( ) A.2300B.2400C.2600D.2500 答案 D 解析 由am=a1+(m-1)d,得99=1+(m-1)2, 解得m=50,所以S50=501+2=2500. 2.記等差數(shù)列的前n項(xiàng)和為Sn,若S2=4,S4=20,則該數(shù)列的公差d等于( ) A.2B.3C.6D.7 答案 B 解析 方法一 由解得d=3. 方法二 由S4-S2=a3+a4=a1+2d+a2+2d=S2+4d,所以20-4=4+4d,解得d=3. 3.在一個等差數(shù)列中,已知a10=10,則S19=________. 答案 190 解析 S19== =19a10=1910=190. 4.已知數(shù)列{an}是等差數(shù)列,Sn是它的前n項(xiàng)和.若S4=20,a4=8,則S8=________. 答案 72 解析 設(shè){an}的公差為d,則由解得a1=d=2, ∴S8=82+2=72. 5.已知數(shù)列{an}滿足a1+2a2+…+nan=n(n+1)(n+2),則an=________. 答案 3(n+1)(n∈N+) 解析 由a1+2a2+…+nan=n(n+1)(n+2), ① 當(dāng)n≥2,n∈N+時,得a1+2a2+…+(n-1)an-1=(n-1)n(n+1), ② ①-②,得nan=n(n+1)(n+2)-(n-1)n(n+1) =n(n+1)[(n+2)-(n-1)]=3n(n+1), ∴an=3(n+1)(n≥2,n∈N+). 又當(dāng)n=1時,a1=123=6也適合上式, ∴an=3(n+1),n∈N+. 1.求等差數(shù)列前n項(xiàng)和公式的方法稱為倒序相加法,在某些數(shù)列求和中也可能用到. 2.等差數(shù)列的兩個求和公式中,一共涉及a1,an,Sn,n,d五個量.若已知其中三個量,通過方程思想可求另外兩個量.在利用求和公式時,要注意整體思想的應(yīng)用,注意下面結(jié)論的運(yùn)用: 若m+n=p+q,則am+an=ap+aq(n,m,p,q∈N+);若m+n=2p,則am+an=2ap(m,n,p∈N+). 3.由Sn與an的關(guān)系求an主要使用an= 一、選擇題 1.在等差數(shù)列{an}中,若a2+a8=8,則該數(shù)列的前9項(xiàng)和S9等于( ) A.18B.27C.36D.45 答案 C 解析 S9=(a1+a9)=(a2+a8)=36. 2.在-20與40之間插入8個數(shù),使這10個數(shù)成等差數(shù)列,則這10個數(shù)的和為( ) A.200B.100C.90D.70 答案 B 解析 S10==100. 3.已知數(shù)列{an}中,a1=1,an=an-1+(n≥2,n∈N+),則數(shù)列{an}的前9項(xiàng)和等于( ) A.27B.C.45D.-9 答案 A 解析 由已知數(shù)列{an}是以1為首項(xiàng),以為公差的等差數(shù)列, ∴S9=91+=9+18=27. 4.在等差數(shù)列{an}和{bn}中,a1=25,b1=75,a100+b100=100,則數(shù)列{an+bn}的前100項(xiàng)的和為( ) A.10000 B.8000 C.9000 D.11000 答案 A 解析 由已知得{an+bn}為等差數(shù)列,故其前100項(xiàng)的和為S100= =50(25+75+100)=10000. 5.在等差數(shù)列{an}中,若S10=4S5,則等于( ) A.B.2C.D.4 答案 A 解析 由題意得10a1+109d=4, ∴10a1+45d=20a1+40d,∴10a1=5d,∴=. 6.在小于100的自然數(shù)中,所有被7除余2的數(shù)之和為( ) A.765B.665C.763D.663 答案 B 解析 ∵a1=2,d=7,2+(n-1)7<100,∴n<15, ∴n=14,S14=142+14137=665. 7.在等差數(shù)列{an}中,a+a+2a3a8=9,且an<0,則S10等于( ) A.-9B.-11C.-13D.-15 答案 D 解析 由a+a+2a3a8=9,得(a3+a8)2=9, ∵an<0,∴a3+a8=-3, ∴S10====-15. 8.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-2n(n∈N+),則a2+a18等于( ) A.36B.35C.34D.33 答案 C 解析 方法一 a2=S2-S1=(22-22)-(12-21)=1, a18=S18-S17=182-218-(172-217)=33. ∴a2+a18=34. 方法二 易知{an}為等差數(shù)列.∴a2+a18=a1+a19,S19==192-219,∴a1+a19=34,即a2+a18=34. 二、填空題 9.在等差數(shù)列{an}中,an=2n+3,n∈N+,前n項(xiàng)和Sn=an2+bn+c(a,b,c為常數(shù)),則a-b+c=________. 答案?。? 解析 因?yàn)閍n=2n+3,所以a1=5,Sn==n2+4n,與Sn=an2+bn+c比較,得a=1,b=4,c=0,所以a-b+c=-3. 10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若=a1+a200,且A,B,C三點(diǎn)共線(該直線不過原點(diǎn)O),則S200=________. 答案 100 解 因?yàn)锳,B,C三點(diǎn)共線(該直線不過原點(diǎn)O), 所以a1+a200=1,所以S200==100. 11.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=3,S6=24,則a9=________. 答案 15 解析 設(shè)等差數(shù)列的公差為d, 則S3=3a1+d=3a1+3d=3,即a1+d=1, S6=6a1+d=6a1+15d=24,即2a1+5d=8. 由解得 故a9=a1+8d=-1+82=15. 三、解答題 12.在等差數(shù)列{an}中, (1)已知a6=10,S5=5,求a8; (2)已知a2+a4=,求S5. 解 (1)方法一 ∵a6=10,S5=5, ∴解得∴a8=a6+2d=16. 方法二 ∵S6=S5+a6=15, ∴15=,即3(a1+10)=15. ∴a1=-5,d==3.∴a8=a6+2d=16. (2)方法一 ∵a2+a4=a1+d+a1+3d=, ∴a1+2d=. ∴S5=5a1+10d=5(a1+2d)=5=24. 方法二 ∵a2+a4=a1+a5,∴a1+a5=, ∴S5===24. 13.已知數(shù)列{an}的所有項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且Sn=a+an-(n∈N+). (1)證明:{an}是等差數(shù)列; (2)求數(shù)列{an}的通項(xiàng)公式. (1)證明 當(dāng)n=1時,a1=S1=a+a1-, 解得a1=3或a1=-1(舍去). 當(dāng)n≥2時, an=Sn-Sn-1=(a+2an-3)-(a+2an-1-3). 所以4an=a-a+2an-2an-1, 即(an+an-1)(an-an-1-2)=0. 因?yàn)閍n+an-1>0,所以an-an-1=2(n≥2). 所以數(shù)列{an}是以3為首項(xiàng),2為公差的等差數(shù)列. (2)解 由(1)知an=3+2(n-1)=2n+1,n∈N+. 14.現(xiàn)有200根相同的鋼管,把它們堆成正三角形垛,要使剩余的鋼管盡可能少,那么剩余鋼管的根數(shù)為________. 答案 10 解析 鋼管排列方式是從上到下各層鋼管數(shù)組成了一個等差數(shù)列,最上面一層鋼管數(shù)為1,逐層增加1個. ∴鋼管總數(shù)為1+2+3+…+n=. 當(dāng)n=19時,S19=190.當(dāng)n=20時,S20=210>200. ∴當(dāng)n=19時,剩余鋼管根數(shù)最少,為10根. 15.已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3a4=117,a2+a5=22. (1)求數(shù)列{an}的通項(xiàng)公式an; (2)若數(shù)列{bn}是等差數(shù)列,且bn=,求非零常數(shù)c. 解 (1)設(shè)等差數(shù)列{an}的公差為d,且d>0. ∵a3+a4=a2+a5=22,又a3a4=117, ∴a3,a4是方程x2-22x+117=0的兩個根. 又公差d>0,∴a3- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020版高中數(shù)學(xué) 第二章 數(shù)列 2.2.2 等差數(shù)列的前n項(xiàng)和第1課時等差數(shù)列的前n項(xiàng)和公式學(xué)案含解析新人教B版必修5 2020 高中數(shù)學(xué) 第二 2.2 等差數(shù)列 課時 公式 解析 新人 必修
鏈接地址:http://m.jqnhouse.com/p-3856820.html