《浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)3 平面向量 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)3 平面向量 Word版含答案(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
突破點(diǎn)3 平面向量
(對應(yīng)學(xué)生用書第14頁)
[核心知識(shí)提煉]
提煉1 平面向量共線、垂直的兩個(gè)充要條件
若a=(x1,y1),b=(x2,y2),則:
(1)a∥b?a=λb(b≠0)?x1y2-x2y1=0.
(2)a⊥b?a·b=0?x1x2+y1y2=0.
提煉2 數(shù)量積常見的三種應(yīng)用
已知兩個(gè)非零向量a=(x1,y1),b=(x2,y2),則
(1)證明向量垂直:a⊥b?a·b=0?x1x2+y1y2=0.
(2)
2、求向量的長度:|a|==.
(3)求向量的夾角:cos〈a,b〉==.
提煉3平面向量解題中應(yīng)熟知的常用結(jié)論
(1)A,B,C三點(diǎn)共線的充要條件是存在實(shí)數(shù)λ,μ,有=λ+μ,且λ+μ=1.
(2)C是線段AB中點(diǎn)的充要條件是=(+).
(3)G是△ABC的重心的充要條件為++=0,若△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),C(x3,y3),則△ABC的重心坐標(biāo)為,.
(4)·=·=·?P為△ABC的垂心.
(5)非零向量a,b垂直的充要條件:a⊥b?a·b=0?|a+b|=|a-b|?x1x2+y1y2
3、=0.
(6)向量b在a的方向上的投影為|b|cos θ=,
向量a在b的方向上的投影為|a|cos θ=.
[高考真題回訪]
回訪1 平面向量的線性運(yùn)算
1.(20xx·浙江高考)已知向量a,b滿足|a|=1,|b|=2,則|a+b|+|a-b|的最小值是________,最大值是________.
4 2 [設(shè)a,b的夾角為θ.
∵|a|=1,|b|=2,
∴|a+b|+|a-b|=+
=+.
令y=+,
則y2=10+2.
∵θ∈[0,π],∴cos2θ∈[0,1],∴y2∈[16,20],
∴y∈[4,2],即|a+b|+|a-b
4、|∈[4,2].]
2.(20xx·浙江高考)記max{x,y}=min{x,y}=設(shè)a,b為平面向量,則( )
A.min{|a+b|,|a-b|}≤min{|a|,|b|}
B.min{|a+b|,|a-b|}≥min{|a|,|b|}
C.max{|a+b|2,|a-b|2}≤|a|2+|b|2
D.max{|a+b|2,|a-b|2}≥|a|2+|b|2
D [由于|a+b|,|a-b|與|a|,|b|的大小關(guān)系與夾角大
小有關(guān),故A,B錯(cuò).當(dāng)a,b夾角為銳角時(shí),|a+b|>|a-b|,此時(shí),|a+b|2>|a|2+|b|2;當(dāng)a,b夾
5、角為鈍角時(shí),|a+b|<|a-b|,此時(shí),|a-b|2>|a|2+|b|2;當(dāng)a⊥b時(shí),|a+b|2=|a-b|2=|a|2+|b|2,故選D.]
3.(20xx·浙江高考)設(shè)θ為兩個(gè)非零向量a,b的夾角,已知對任意實(shí)數(shù)t,|b+ta|的最小值為1.( )
【導(dǎo)學(xué)號:68334048】
A.若θ確定,則|a|唯一確定
B.若θ確定,則|b|唯一確定
C.若|a|確定,則θ唯一確定
D.若|b|確定,則θ唯一確定
B [|b+ta|2=b2+2a·b·t+t2a2=|a|2t2+2|a|·|b|cos θ·
6、t+|b|2.
因?yàn)閨b+ta|min=1,
所以=|b|2(1-cos2θ)=1.
所以|b|2sin2θ=1,所以|b|sin θ=1,即|b|=.
即θ確定,|b|唯一確定.]
回訪2 平面向量的數(shù)量積及其應(yīng)用
4.(20xx·浙江高考)設(shè)△ABC,P0是邊AB上一定點(diǎn),滿足P0B=AB,且對于邊AB上任一點(diǎn)P, 恒有·≥·,則( )
A.∠ABC=90° B.∠BAC=90°
C.AB=AC D.AC=BC
D [A項(xiàng),若∠ABC=90°,如圖,則·=||·||cos∠B
7、PC=||2,·=||2.當(dāng)點(diǎn)P落在點(diǎn)P0的右側(cè)時(shí),||2<||2,即·<·,不符合;
B項(xiàng),若∠BAC=90°,如圖,則·=||·||cos∠BPC=-||·||,·=-||||=-3.
當(dāng)P為AB的中點(diǎn)時(shí),·=-4,
·<·,不符合;
C項(xiàng),若AB=AC,假設(shè)∠BAC=120°,如圖,則AC′=2,·=||·||cos∠BPC=-||||,·=||||cos∠BP0C=-||||=-5.當(dāng)P落在A點(diǎn)時(shí),-||||=-8
8、,所以·<·,不符合.故選D.]
5.(20xx·浙江高考)已知平面向量a,b,|a|=1,|b|=2,a·b=1,若e為平面單位向量,則|a·e|+|b·e|的最大值是________. 【導(dǎo)學(xué)號:68334049】
[∵a·b=|a|·|b|cos〈a,b〉=1×2×cos〈a,b〉=1,
∴cos〈a,b〉=,
∴〈a,b〉=60°.
以a的起點(diǎn)為原點(diǎn),所在直線為x軸建立直角坐標(biāo)系,
則a=(1,0),b=(1,).
設(shè)e=(cos θ,sin θ
9、),
則|a·e|+|b·e|=|cos θ|+|cos θ+sin θ|
≤|cos θ|+|cos θ|+|sin θ|
=2|cos θ|+|sin θ|
≤
=.]
6.(20xx·浙江高考)已知e1,e2是平面單位向量,且e1·e2=.若平面向量b滿足b·e1=b·e2=1,則|b|=________.
[∵e1·e2=,
∴|e1||e2|cos〈e1,e2〉=,∴〈e1,e2〉=60°.
又∵b·e1=b·e2=1>0,∴〈b,e1〉=〈b
10、,e2〉=30°.
由b·e1=1,得|b||e1|cos 30°=1,∴|b|==.]
7.(20xx·浙江高考)設(shè)e1,e2為單位向量,非零向量b=xe1+ye2,x,y∈R.若e1,e2的夾角為,則的最大值等于________.
2 [根據(jù)題意,得
2====
==.
因?yàn)?+≥,所以0<2≤4,所以0<≤2.故的最大值為2.]
(對應(yīng)學(xué)生用書第15頁)
熱點(diǎn)題型1 平面向量的運(yùn)算
題型分析:該熱點(diǎn)是高考的必考點(diǎn)之一,考查方式主要體現(xiàn)在以下兩個(gè)方面:一是以平面圖形為載體考查向量的線性運(yùn)算;二是以向量的共線與垂直為切入
11、點(diǎn),考查向量的夾角、模等.
【例1】 (1)(20xx·杭州第二次調(diào)研)在梯形ABCD中,AB∥DC,AB⊥AD,AD=DC=1,AB=2.若=+,則|+t|(t∈R)的取值范圍是( )
【導(dǎo)學(xué)號:68334050】
A. B.[,+∞)
C. D.[1,+∞)
(2)已知△ABC是邊長為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長到點(diǎn)F,使得DE=2EF,則·的值為( )
A.- B.
C. D.
(1)A (2)B [(1)以A為坐標(biāo)原點(diǎn),AB,AD分別為x軸,y軸建立直角坐標(biāo)系(圖略),則D(0,1),B(2,0
12、),C(1,1),設(shè)P(x,y),由=+得(x,y)=(0,1)+(2,0),x=,y=,所以P,
∴=,=(-1,1),即|+t|==≥,當(dāng)且僅當(dāng)t=時(shí)等號成立,故選A.
(2)如圖所示,=+.
又D,E分別為AB,BC的中點(diǎn),
且DE=2EF,所以=,=+=,所以=+.
又=-,
則·=·(-)
=·-2+2-·
=2-2-·.
又||=||=1,∠BAC=60°,
故·=--×1×1×=.故選B.]
[方法指津]
1.平面向量的線性運(yùn)算要抓住兩條
13、主線:一是基于“形”,通過作出向量,結(jié)合圖形分析;二是基于“數(shù)”,借助坐標(biāo)運(yùn)算來實(shí)現(xiàn).
2.正確理解并掌握向量的概念及運(yùn)算,強(qiáng)化“坐標(biāo)化”的解題意識(shí),注重?cái)?shù)形結(jié)合思想、方程思想與轉(zhuǎn)化思想的應(yīng)用.
提醒:運(yùn)算兩平面向量的數(shù)量積時(shí),務(wù)必要注意兩向量的方向.
[變式訓(xùn)練1] (1)已知向量a=(-1,2),b=(3,1),c=(x,4),若(a-b)⊥c,則c·(a+b)=( )
A.(2,12) B.(-2,12)
C.14 D.10
(2)已知e1,e2是不共線向量,a=me1+2e2,b=ne1-e2,且mn≠0.若a∥b,則=__________. 【導(dǎo)學(xué)號
14、:68334051】
(1)C (2)-2 [(1)易知a-b=(-4,1),由(a-b)⊥c,可得(-4)×x+1×4=0,即-4x+4=0,解得x=1,
∴c=(1,4).
而a+b=(2,3),∴c·(a+b)=1×2+4×3=14.故選C.
(2)∵a∥b,∴a=λb,即me1+2e2=λ(ne1-e2),則解得=-2.]
熱點(diǎn)題型2 三角與向量的綜合問題
題型分析:平面向量作為解決問題的工具,具有代數(shù)形式和幾何形式的“雙重型”,高考常在平面向量與三角函數(shù)的交匯處命題,通過向量運(yùn)算作為題目條件.
【例2】 (名師押
15、題)已知向量a=,b=(cos x,-1).
(1)當(dāng)a∥b時(shí),求cos2x-sin 2x的值;
(2)設(shè)函數(shù)f(x)=2(a+b)·b,已知在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.若a=,b=2,sin B=,求y=f(x)+4cos 的取值范圍.
[解] (1)∵a∥b,∴cos x+sin x=0, 2分
∴tan x=-, 4分
∴cos2x-sin 2x===. 6分
(2)f(x)=2(a+b)·b=sin +, 8分
由正弦定理得=,
可得sin A=. 9分
∵b>a,∴A=, 10分
y=f(x)+
16、4cos=sin-. 13分
∵x∈,∴2x+∈,
∴-1≤y≤-,
即y的取值范圍是. 15分
[方法指津]
平面向量與三角函數(shù)問題的綜合主要利用向量數(shù)量積運(yùn)算的坐標(biāo)形式,多與同角三角函數(shù)關(guān)系、誘導(dǎo)公式以及和角與倍角等公式求值等問題相結(jié)合,計(jì)算的準(zhǔn)確性和三角變換的靈活性是解決此類問題的關(guān)鍵點(diǎn).
[變式訓(xùn)練2] 在平面直角坐標(biāo)系xOy中,已知向量m=,n=(sin x,cos x),x∈.
(1)若m⊥n,求tan x的值;
(2)若m與n的夾角為,求x的值.
[解] (1)若m⊥n,則m·n=0.
由向量數(shù)量積的坐標(biāo)公式得sin x-cos x=0, 4分
∴tan x=1. 6分
(2)∵m與n的夾角為,∴m·n=|m|·|n|cos ,即sin x-cos x=,8分
∴sin =. 12分
又∵x∈,∴x-∈,
∴x-=,即x=. 15分