新版數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案
《新版數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案(16頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新版數(shù)學(xué)北師大版精品資料 2 空間向量的運(yùn)算(二) 學(xué)習(xí)目標(biāo) 1.掌握兩個(gè)向量的數(shù)量積的概念、性質(zhì)、計(jì)算與運(yùn)算律.2.掌握兩個(gè)向量的數(shù)量積在判斷向量共線與垂直中的應(yīng)用. 知識(shí)點(diǎn) 數(shù)量積的概念及運(yùn)算律 1.已知兩個(gè)非零向量a,b,則|a||b|cos〈a,b〉叫作a,b的數(shù)量積,記作ab,即ab=|a||b|cos〈a,b〉. 2.空間向量數(shù)量積的性質(zhì) (1)a⊥b?ab=0. (2)|a|2=aa,|a|=. (3)cos〈a,b〉=. 3.空間向量數(shù)量積的運(yùn)算律 (1)(λa)b=λ(ab)(λ∈R). (2)ab=ba(交換律). (3)a(b+c)=ab+ac
2、(分配律). 特別提醒:不滿足結(jié)合律(ab)c=a(bc). 1.對(duì)于非零向量b,由ab=bc,可得a=c.() 2.對(duì)于向量a,b,c,有(ab)c=a(bc).() 3.若非零向量a,b為共線且同向的向量,則ab=|a||b|.(√) 4.對(duì)任意向量a,b,滿足|ab|≤|a||b|.(√) 類型一 數(shù)量積的計(jì)算 例1 如圖所示,在棱長(zhǎng)為1的正四面體ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),求: (1); (2); (3); (4). 考點(diǎn) 空間向量數(shù)量積的概念及性質(zhì) 題點(diǎn) 用定義求數(shù)量積 解 (1)= =||||cos〈,〉 =cos 60=.
3、 (2)==||2=. (3)= =||||cos〈,〉 =cos 120=-. (4)=(-) =- =||||cos〈,〉-||||cos〈,〉 =cos 60-cos 60=0. 反思與感悟 (1)已知a,b的模及a與b的夾角,直接代入數(shù)量積公式計(jì)算. (2)如果要求的是關(guān)于a與b的多項(xiàng)式形式的數(shù)量積,可以先利用數(shù)量積的運(yùn)算律將多項(xiàng)式展開,再利用aa=|a|2及數(shù)量積公式進(jìn)行計(jì)算. 跟蹤訓(xùn)練1 已知在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=2,AD=4,E為側(cè)面AB1的中心,F(xiàn)為A1D1的中點(diǎn).試計(jì)算: (1);(2);(3). 考點(diǎn) 空間向量數(shù)量積的
4、概念及性質(zhì) 題點(diǎn) 用定義求數(shù)量積 解 如圖,設(shè)=a,=b, =c,則|a|=|c|=2,|b|=4, ab=bc=ca=0. (1) =b=|b|2=42=16. (2)=(a+c)=|c|2-|a|2 =22-22=0. (3)= =(-a+b+c)=-|a|2+|b|2=2. 類型二 利用數(shù)量積證明垂直問題 例2 (1)已知空間四邊形ABCD中,AB⊥CD,AC⊥BD,那么AD與BC的位置關(guān)系為___________________________________________________.(填“平行”“垂直”) 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn)
5、數(shù)量積的綜合應(yīng)用 答案 垂直 解析 ∵=(+)(-) =+-2- =(--)==0, ∴AD與BC垂直. (2)如圖所示,在正方體ABCD-A1B1C1D1中,O為AC與BD的交點(diǎn),G為CC1的中點(diǎn),求證:A1O⊥平面GBD. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 數(shù)量積的綜合應(yīng)用 證明 設(shè)=a,=b,=c, 則ab=0,bc=0,ac=0,|a|=|b|=|c|. ∵=+=+(+) =c+a+b, =-=b-a, =+=(+)+ =a+b-c ∴=(b-a) =cb-ca+ab-a2+b2-ba =(b2-a2) =(|b|2-|a|2)=0. 于是⊥
6、,即A1O⊥BD. 同理可證⊥,即A1O⊥OG. 又∵OG∩BD=O,OG?平面GBD,BD?平面CBD, ∴A1O⊥平面GBD. 反思與感悟 (1)證明線線垂直的方法 證明線線垂直的關(guān)鍵是確定直線的方向向量,根據(jù)方向向量的數(shù)量積是否為0來判斷兩直線是否垂直. (2)證明與空間向量a,b,c有關(guān)的向量m,n垂直的方法 先用向量a,b,c表示向量m,n,再判斷向量m,n的數(shù)量積是否為0. 跟蹤訓(xùn)練2 如圖,在空間四邊形OACB中,OB=OC,AB=AC,求證:OA⊥BC. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 數(shù)量積的綜合應(yīng)用 證明 因?yàn)镺B=OC,AB=AC,OA=OA,
7、 所以△OAC≌△OAB, 所以∠AOC=∠AOB. 又=(-)=- =||||cos∠AOC-||||cos∠AOB=0, 所以⊥,即OA⊥BC. 類型三 利用數(shù)量積解決空間角或兩點(diǎn)間的距離問題 命題角度1 解決角度問題 例3 在空間四邊形OABC中,連接AC,OB,OA=8,AB=6,AC=4,BC=5,∠OAC=45,∠OAB=60,求向量與BC所成角的余弦值. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求角 解 ∵=-, ∴=- =||||cos〈,〉-||||cos〈,〉 =84cos135-86cos120=24-16, ∴cos〈,〉 =
8、==. 反思與感悟 求兩個(gè)空間向量a,b夾角的方法類同平面內(nèi)兩向量夾角的求法,利用公式cos〈a,b〉=,在具體的幾何體中求兩向量的夾角時(shí),可把其中一個(gè)向量的起點(diǎn)平移至與另一個(gè)向量的起點(diǎn)重合,轉(zhuǎn)化為求平面中的角度大小問題. 跟蹤訓(xùn)練3 如圖所示,在正方體ABCD-A1B1C1D1中,求異面直線A1B與AC所成的角. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求解 解 不妨設(shè)正方體的棱長(zhǎng)為1, 設(shè)=a,=b,=c, 則|a|=|b|=|c|=1, ab=bc=ca=0, =a-c,=a+b. ∴=(a-c)(a+b) =|a|2+ab-ac-bc=1, 而||=||
9、=, ∴cos〈,〉==, ∵〈,〉∈[0,180], ∴〈,〉=60. 又異面直線所成角的范圍是(0,90], 因此,異面直線A1B與AC所成的角為60. 命題角度2 求空間中的兩點(diǎn)間的距離 例4 如圖,正三棱柱(底面是正三角形的直三棱柱)ABC-A1B1C1的各棱長(zhǎng)都為2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),求EF的長(zhǎng). 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求線段長(zhǎng) 解 設(shè)=a,=b,=c. 由題意,知|a|=|b|=|c|=2, 且〈a,b〉=60,〈a,c〉=〈b,c〉=90. 因?yàn)椋剑? =-++ =-a+b+c, 所以||2=2 =a2+
10、b2+c2+2 =22+22+22+222cos 60 =1+1+4-1=5, 所以||=,即EF=. 反思與感悟 求解距離問題時(shí),先選擇以兩點(diǎn)為端點(diǎn)的向量,將此向量表示為幾個(gè)向量和的形式,求出這幾個(gè)已知向量的兩兩之間的夾角以及它們的模,利用公式|a|=求解即可. 跟蹤訓(xùn)練4 在平行六面體ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90,∠BAA1=∠DAA1=60,求AC1的長(zhǎng). 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求線段長(zhǎng) 解 因?yàn)椋剑? 所以=(++)2 =2+2++2(++). 因?yàn)椤螧AD=90,∠BAA1=∠DAA1=60
11、, 所以=1+4+9+2(13cos 60+23cos 60)=23. 因?yàn)椋絴|2, 所以||2=23, 則||=,即AC1=. 1.對(duì)于向量a,b,c和實(shí)數(shù)λ,下列說法正確的是( ) A.若ab=0,則a=0或b=0 B.若λa=0,則λ=0或a=0 C.若a2=b2,則a=b或a=-b D.若ab=ac,則b=c 考點(diǎn) 空間向量數(shù)量積的概念及性質(zhì) 題點(diǎn) 數(shù)量積的性質(zhì) 答案 B 解析 結(jié)合向量的運(yùn)算,只有B正確. 2.已知向量a,b是平面α內(nèi)的兩個(gè)不相等的非零向量,非零向量c是直線l的一個(gè)方向向量,則“ca=0且cb=0”是“l(fā)⊥α”的( ) A.充分
12、不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 數(shù)量積的綜合應(yīng)用 答案 B 解析 若a∥b,則不一定得到l⊥α,反之成立. 3.已知|a|=2,|b|=3,〈a,b〉=60,則|2a-3b|等于( ) A. B.97 C. D.61 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求線段長(zhǎng) 答案 C 解析 |2a-3b|2=4a2-12ab+9b2 =422-1223cos60+932=61, ∴|2a-3b|=. 4.已知a,b為兩個(gè)非零空間向量,若|a|=2,|b|=,ab=-,則〈a,b〉=______
13、__. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求角 答案 解析 cos〈a,b〉==-,∵〈a,b〉∈[0,π], ∴〈a,b〉=. 5.已知正四面體ABCD的棱長(zhǎng)為2,E,F(xiàn)分別為BC,AD的中點(diǎn),則EF的長(zhǎng)為________. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求線段長(zhǎng) 答案 解析 ||2=2=(++)2 =2+2+2+2(++) =12+22+12+2(12cos120+0+21cos120)=2, ∴||=,∴EF的長(zhǎng)為. 1.空間向量運(yùn)算的兩種方法 (1)利用定義:利用ab=|a||b|cos〈a,b〉并結(jié)合運(yùn)算律進(jìn)行計(jì)算. (
14、2)利用圖形:計(jì)算兩個(gè)數(shù)量的數(shù)量積,可先將各向量移到同一頂點(diǎn),利用圖形尋找夾角,再代入數(shù)量積公式進(jìn)行運(yùn)算. 2.在幾何體中求空間向量數(shù)量積的步驟 (1)首先將各向量分解成已知模和夾角的向量的組合形式. (2)利用向量的運(yùn)算律將數(shù)量積展開,轉(zhuǎn)化為已知模和夾角的向量的數(shù)量積. (3)代入ab=|a||b|cos〈a,b〉求解. 一、選擇題 1.已知非零向量a,b不平行,并且其模相等,則a+b與a-b之間的關(guān)系是( ) A.垂直 B.共線 C.不垂直 D.以上都可能 考點(diǎn) 空間向量數(shù)量積的概念與性質(zhì) 題點(diǎn) 數(shù)量積的性質(zhì) 答案 A 解析 由題意知|a|=|b|, ∵(a
15、+b)(a-b)=|a|2-|b|2=0, ∴(a+b)⊥(a-b). 2.已知向量a,b滿足條件:|a|=2,|b|=,且a與2b-a互相垂直,則〈a,b〉等于( ) A.30 B.45 C.60 D.90 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求角 答案 B 解析 根據(jù)a(2b-a)=0, 即2ab=|a|2=4, 解得ab=2, 又cos〈a,b〉===, 又〈a,b〉∈[0,180], ∴〈a,b〉=45,故選B. 3.若向量m垂直于向量a和b,向量n=λa+μb(λ,μ∈R且λ,μ≠0),則( ) A.m∥n B.m⊥n C.m不平行于n,
16、m也不垂直于n D.以上三種情況都有可能 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 數(shù)量積的綜合應(yīng)用 答案 B 4.設(shè)平面上有四個(gè)互異的點(diǎn)A,B,C,D,已知(+-2)(-)=0,則△ABC一定是( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等邊三角形 考點(diǎn) 空間向量數(shù)量積的概念及性質(zhì) 題點(diǎn) 用定義求數(shù)量積 答案 B 解析 由(+-2)(-) =(-+-)(-) =(+)(-) =||2-||2=0,得||=||, 故△ABC為等腰三角形. 5.已知a,b,c是兩兩垂直的單位向量,則|a-2b+3c|等于( ) A.14B.C.4D.2 考點(diǎn)
17、空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求線段長(zhǎng) 答案 B 解析 ∵|a-2b+3c|2=|a|2+4|b|2+9|c|2-4ab+6ac-12bc=14, ∴|a-2b+3c|=. 6.在長(zhǎng)方體ABCD-A1B1C1D1中,下列向量的數(shù)量積一定不為0的是( ) A. B. C. D. 考點(diǎn) 空間向量數(shù)量積的概念及性質(zhì) 題點(diǎn) 數(shù)量積的性質(zhì) 答案 D 解析 選項(xiàng)A,當(dāng)四邊形ADD1A1為正方形時(shí),可得AD1⊥A1D,而A1D∥B1C,所以AD1⊥B1C,此時(shí)有=0; 選項(xiàng)B,當(dāng)四邊形ABCD為正方形時(shí),可得AC⊥BD, 又AC⊥BB1,BD∩BB1=B, 可得AC⊥平
18、面BB1D1D,故有AC⊥BD1, 此時(shí)=0; 選項(xiàng)C,由長(zhǎng)方體的性質(zhì)可得AB⊥平面ADD1A1, 所以AB⊥AD1,所以=0,故選D. 7.在正方體ABCD-A1B1C1D1中,有下列命題: ①(++)2=32;②(-)=0;③與的夾角為60. 其中真命題的個(gè)數(shù)為( ) A.1B.2C.3D.0 考點(diǎn) 空間向量數(shù)量積的概念及性質(zhì) 題點(diǎn) 數(shù)量積的性質(zhì) 答案 B 解析?、佗谡_;∵與的夾角為120, ∴③不正確,故選B. 二、填空題 8.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,則=________. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 數(shù)量積的綜合應(yīng)用
19、答案 a2 解析 如圖,=-, =-=-, ∴ =(-)(-) =--+||2 =0-0-0+a2=a2. 9.已知空間向量a,b,|a|=3,|b|=5,m=a+b,n=a+λb,〈a,b〉=135,若m⊥n,則λ的值為________. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 數(shù)量積的綜合應(yīng)用 答案?。? 解析 由題意知ab=|a||b|cos〈a,b〉=35=-15, 由m⊥n,得(a+b)(a+λb)=0, 即|a|2+λab+ab+λ|b|2 =18-15(λ+1)+25λ=0. 解得λ=-. 10.已知a,b是空間兩個(gè)向量,若|a|=2,|b|=2,|a
20、-b|=,則cos〈a,b〉=________. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求角 答案 解析 將|a-b|=化為(a-b)2=7,求得ab=, 再由ab=|a||b|cos〈a,b〉,求得cos〈a,b〉=. 11.已知a,b均為單位向量,它們的夾角為60,那么|a+3b|=________. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求線段長(zhǎng) 答案 解析 ∵|a+3b|2=(a+3b)2=a2+6ab+9b2 =1+6cos60+9=13, ∴|a+3b|=. 三、解答題 12.如圖,在直三棱柱ABC-A′B′C′中,AC=BC=AA′,∠
21、ACB=90,D,E分別為棱AB,BB′的中點(diǎn). (1)求證:CE⊥A′D; (2)求異面直線CE與AC′所成角的余弦值. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求角 (1)證明 設(shè)=a,=b,=c, 根據(jù)題意得|a|=|b|=|c|, 且ab=bc=ca=0, ∴=b+c, =-c+b-a, ∴=-c2+b2=0, ∴⊥,即CE⊥A′D. (2)∵=-a+c, ||=|a|,||=|a|, =(-a+c)=c2=|a|2, ∴cos〈,〉==, 即異面直線CE與AC′所成角的余弦值為. 13.等邊△ABC中,P在線段AB上,且=λ,若=,則實(shí)數(shù)λ的
22、值為________. 考點(diǎn) 空間向量數(shù)量積的概念及性質(zhì) 題點(diǎn) 空間向量數(shù)量積定義 答案 1- 解析 如圖,=-+=-+λ, 故=(λ-) =λ||2-||||cos A, =(-λ)(1-λ)=λ(λ-1)||2, 設(shè)||=a(a>0),則a2λ-a2=λ(λ-1)a2, 解得λ=1-. 四、探究與拓展 14.已知BB1⊥平面ABC,且△ABC是∠B=90的等腰直角三角形,平行四邊形ABB1A1,平行四邊形BB1C1C的對(duì)角線都分別相互垂直且相等,若AB=a,則異面直線BA1與AC所成的角為________. 考點(diǎn) 空間向量數(shù)量積的應(yīng)用 題點(diǎn) 利用數(shù)量積求角 答案 60 解析 如圖所示,∵=+,=+, ∴=(+)(+) =+++. ∵AB⊥BC,BB1⊥AB,BB1⊥BC, ∴=0,=0,=0且=-a2. ∴=-a2. 又=||||cos〈,〉, ∴cos〈,〉==-. 又∵〈,〉∈[0,180],∴〈,〉=120, 又∵異面直線所成的角是銳角或直角, ∴異面直線BA1與AC所成的角為60.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功