《精修版高中新課程數(shù)學新課標人教A版選修22第一章 導數(shù)及其應(yīng)用章末質(zhì)量評估》由會員分享,可在線閱讀,更多相關(guān)《精修版高中新課程數(shù)學新課標人教A版選修22第一章 導數(shù)及其應(yīng)用章末質(zhì)量評估(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
章末質(zhì)量評估(一)
(時間:100分鐘 滿分:120分)
一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)
1.曲線y=x2-2x在點處的切線的傾斜角為( ).
A.-135 B.45
C.-45 D.135
解析 y′=x-2,所以斜率k=1-2=-1,因此,傾斜角為135.
答案 D
2.下列求導運算正確的是( ).
A.′=1+ B.(log2x)′=
C.(3x)′=3xlog3e D.(x2cos
2、x)′=-2xsin x
解析 ′=1-,所以A不正確;(3x)′=3xln 3,所以C不正確;(x2cos x)′=2xcos x+x2(-sin x),所以D不正確;(log2x)′=,所以B正確.故選B.
答案 B
3.|sin x|dx等于( ).
A.0 B.1 C.2 D.4
解析 ∫2π0|sin x|dx=∫π0sin xdx+∫2ππ(-sin x)dx=+cos x=1+1+1+1=4.
答案 D
4.函數(shù)y=1+3x-x3有( ).
A.極小值-1,極大值1
B.極小值-2,極大值3
C.極小值-2,極大值2
D.極小值-1,極大值3
解
3、析 y′=-3x2+3,令y′=0得,x=1或x=-1,
∴f(1)=3,f(-1)=-1.
答案 D
5.函數(shù)f(x)=( ).
A.在(0,2)上單調(diào)遞減
B.在(-∞,0)和(2,+∞)上單調(diào)遞增
C.在(0,2)上單調(diào)遞增
D.在(-∞,0)和(2,+∞)上單調(diào)遞減
解析 f′(x)===.
令f′(x)=0得x1=0,x2=2.
∴x∈(-∞,0)和(2,+∞)時,f′(x)>0.
x∈(0,1)∪(1,2)時,f′(x)<0.
答案 B
6.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為( ).
A.72 B.36 C.12 D.0
解
4、析 y′=4x3-4,令y′=0,4x3-4=0,x=1,當x<1時,y′<0;當x>1時,y′>0得y極小值=y(tǒng)|x=1=0,而端點的函數(shù)值y|x=-2=27,y|x=3=72,得ymin=0.
答案 D
7.已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為( ).
A.-1<a<2 B.-3<a<6
C.a(chǎn)<-1或a>2 D.a(chǎn)<-3或a>6
解析 因為f(x)有極大值和極小值,所以導函數(shù)f′(x)=3x2+2ax+(a+6)有兩個不等實根,
所以Δ=4a2-12(a+6)>0,得a<-3或a>6.
答案 D
8.已知f(x)的導函數(shù)
5、f′(x)圖象如右圖所示,那么f(x)
的圖象最有可能是圖中的( ).
解析 ∵x∈(-∞,-2)時,f′(x)<0,∴f(x)為減函數(shù);同理f(x)在(-2,0)上為增函數(shù),(0,+∞)上為減函數(shù).
答案 A
9.由直線y=x,y=-x+1及x軸圍成平面圖形的面積為( ).
解析 畫出圖形,由定積分定義可知選C.
答案 C
10.設(shè)曲線y=xn+1(n∈N*)在(1,1)處的切線與x軸的交點的橫坐標為xn,則log2 010x1+log2 010x2+…+log2 010x2 009的值為( ).
A.-log2 0102 009 B.-1
C.(l
6、og2 0102 009)-1 D.1
解析 ∵y′|x=1=n+1,∴切線方程為y-1=(n+1)(x-1),
令y=0,得x=1-=,即xn=.
所以log2 010x1+log2 010x2+…+log2 010x2 009
=log2 010(x1x2…x2 009)
=log2 010=log2 010=-1.
答案 B
二、填空題(本大題共4小題,每小題4分,共16分.把答案填在題中橫線上)
11.若f(x)=x3,f′(x0)=3,則x0的值為________.
解析 f′(x0)=3x=3,∴x0=1.
答案 1
12.曲線y=ln x在點M(e,
7、1)處的切線的斜率是________,切線的方程為________.
解析 由于y′=,∴k=y(tǒng)′|x=e=,故切線的方程為y-1=(x-e),故y=x.
答案 x-ey=0
13.函數(shù)y=x3+x2-5x-5的單調(diào)遞增區(qū)間是________.
解析 由y′=3x2+2x-5>0得x<-,或x>1.
答案 ,(1,+∞)
14.若 (x-k)dx=,則實數(shù)k的值為________.
解析 ∫10(x-k)dx==-k=,
∴k=-1.
答案?。?
三、解答題(本大題共5小題,共54分.解答時應(yīng)寫出必要的文字說明、證明過程或演算步驟)
15.(10分)設(shè)函數(shù)f(x)=2x
8、3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在點A(1,16)處的切線方程.
解 (1)f′(x)=6x2-6(a+1)x+6a.
∵f(x)在x=3處取得極值,
∴f′(3)=69-6(a+1)3+6a=0,
解得a=3.
∴f(x)=2x3-12x2+18x+8.
(2)A點在f(x)上,
由(1)可知f′(x)=6x2-24x+18,
f′(1)=6-24+18=0,
∴切線方程為y=16.
16.(10分)設(shè)函數(shù)f(x)=ln x+ln(2-x)+ax(a>0).
(1)當a=1時
9、,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,1]上的最大值為,求a的值.
解 函數(shù)f(x)的定義域為(0,2),
f′(x)=-+a.
(1)當a=1時,f′(x)=,
所以f(x)的單調(diào)遞增區(qū)間為(0,),
單調(diào)遞減區(qū)間為(,2).
(2)當x∈(0,1]時,f′(x)=+a>0,
即f(x)在(0,1]上單調(diào)遞增,故f(x)在(0,1]上的最大值為f(1)=a,因此a=.
17.(10分)給定函數(shù)f(x)=-ax2+(a2-1)x和g(x)=x+.
(1)求證:f(x)總有兩個極值點;
(2)若f(x)和g(x)有相同的極值點,求a的值.
(1)證明 因為f′
10、(x)=x2-2ax+(a2-1)=[x-(a+1)][x-(a-1)],
令f′(x)=0,解得x1=a+1,x2=a-1.
當x0;
當a-1
11、a,x2=-a都是g(x)的極值點.
18.(12分)已知函數(shù)f(x)=x3+ax2+bx+c在x=-1與x=2處都取得極值.
(1)求a,b的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對x∈[-2,3],不等式f(x)+c0,解得x<-1或x>2.
∴f(x)的減區(qū)間為(-1,2),
增區(qū)間為(-∞,-1),(2,+∞).
(2)由(1)知,f(x)在(-∞,-1)上
12、單調(diào)遞增;
在(-1,2)上單調(diào)遞減;在(2,+∞)上單調(diào)遞增.
∴x∈[-2,3]時,f(x)的最大值即為
f(-1)與f(3)中的較大者.
f(-1)=+c,f(3)=-+c.
∴當x=-1時,f(x)取得最大值.
要使f(x)+cf(-1)+c,
即2c2>7+5c,解得c<-1或c>.
∴c的取值范圍為(-∞,-1)∪.
19.(12分)若函數(shù)f(x)=ax3-bx+4,當x=2時,函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個不同的根,求實數(shù)k的取值范圍.
解 f′(x)=3ax2-b.
(1)由題意得
解
13、得
故所求函數(shù)的解析式為f(x)=x3-4x+4.
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),令f′(x)=0,得x=2或x=-2.
當x變化時,f′(x),f(x)的變化情況如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
f′(x)
+
0
-
0
+
f(x)
-
因此,當x=-2時,
f(x)有極大值,
當x=2時,f(x)有極小值-,
所以函數(shù)f(x)=x3-4x+4的圖象大致如圖所示.
若f(x)=k有3個不同的根,則直線y=k與函數(shù)f(x)的圖象有3個交點,所以-