《新課標(biāo)高三數(shù)學(xué) 一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時(shí)訓(xùn)練 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高三數(shù)學(xué) 一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時(shí)訓(xùn)練 理(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
【導(dǎo)與練】(新課標(biāo))20xx屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時(shí)訓(xùn)練 理
【選題明細(xì)表】
知識(shí)點(diǎn)、方法
題號(hào)
曲線與方程
1
直接法求軌跡(方程)
4、9、12、13
定義法求軌跡(方程)
2、5、6、11、15、16、17
相關(guān)點(diǎn)法求軌跡(方程)
7、10、14
參數(shù)法求軌跡(方程)
3、8
基礎(chǔ)過關(guān)
一、選擇題
1.方程(x2+y2-4)x+y+1=0的曲線形狀是( C )
解析:原方程可化為x2+y2-4=0,x+y+1≥0或x+y+1=0.
顯然方程表示直線x+y+
2、1=0和圓x2+y2-4=0在直線x+y+1=0的右上方部分,故選C.
2. △ABC的頂點(diǎn)A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點(diǎn)C的軌跡方程是( C )
(A)x29-y216=1 (B)x216-y29=1
(C)x29-y216=1(x>3) (D)x216-y29=1(x>4)
解析:如圖,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,
所以|CA|-|CB|=8-2=6.
根據(jù)雙曲線定義,所求軌跡是以A、B為焦點(diǎn),實(shí)軸長(zhǎng)為6的雙曲線的右支,
方程為x29-y216=1 (x>3).
3.平面直角坐標(biāo)系中,已知
3、兩點(diǎn)A(3,1),B(-1,3),若點(diǎn)C滿足OC→=
λ1OA→+λ2OB→(O為坐標(biāo)原點(diǎn)),其中λ1,λ2∈R,且λ1+λ2=1,則點(diǎn)C的軌跡是( A )
(A)直線 (B)橢圓 (C)圓 (D)雙曲線
解析:設(shè)C(x,y),則OC→=(x,y),OA→=(3,1),OB→=(-1,3),
∵OC→=λ1OA→+λ2OB→,
∴x=3λ1-λ2,y=λ1+3λ2,又λ1+λ2=1,
∴x+2y-5=0,表示一條直線.
4.動(dòng)點(diǎn)P為橢圓x2a2+y2b2=1 (a>b>0)上異于橢圓頂點(diǎn)(a,0)的一點(diǎn),F1、F2為橢圓的兩個(gè)焦點(diǎn),動(dòng)圓C與線段F1P、F1F2的延長(zhǎng)線及線段PF2
4、相切,則圓心C的軌跡為( D )
(A)橢圓 (B)雙曲線
(C)拋物線 (D)直線
解析:如圖所示,設(shè)三個(gè)切點(diǎn)分別為M、N、Q.
∴|PF1|+|PF2|=|PF1|+|PM|+|F2N|=|F1N|+|F2N|=|F1F2|+2|F2N|=2a,
∴|F2N|=a-c,
∴N點(diǎn)是橢圓的右頂點(diǎn),
∴CN⊥x軸,
∴圓心C的軌跡為直線.
5.已知點(diǎn)M(-3,0),N(3,0),B(1,0),動(dòng)圓C與直線MN切于點(diǎn)B,過M、N與圓C相切的兩直線相交于點(diǎn)P,則P點(diǎn)的軌跡方程為( A )
(A)x2-y28=1 (x>1) (B)x2-y28=1 (x<-1)
(C)
5、x2+y28=1 (x>0) (D)x2-y210=1 (x>1)
解析:設(shè)另兩個(gè)切點(diǎn)為E、F,
如圖所示,則|PE|=|PF|,
|ME|=|MB|,
|NF|=|NB|.
從而|PM|-|PN|=|ME|-|NF|=|MB|-|NB|=4-2=2<|MN|,
所以P的軌跡是以M、N為焦點(diǎn),實(shí)軸長(zhǎng)為2的雙曲線的右支.a=1,c=3,
∴b2=8.
故方程為x2-y28=1 (x>1).故選A.
6.點(diǎn)P是以F1、F2為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是( A )
(A)圓 (B)橢圓
(C)雙曲線 (D)拋
6、物線
解析:如圖,延長(zhǎng)F2M交F1P延長(zhǎng)線于N.
∵|PF2|=|PN|,
∴|F1N|=2a.
連接OM,則在△NF1F2中,OM為中位線,
則|OM|=12|F1N|=a.
∴點(diǎn)M的軌跡是圓.
7.(20xx瑞安十校模擬)點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)的軌跡方程是( A )
(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4
(C)(x+4)2+(y-2)2=4 (D)(x+2)2+(y-1)2=1
解析:設(shè)圓上任一點(diǎn)為Q(x0,y0),PQ的中點(diǎn)為M(x,y),
則x=4+x02,y=-2+y02,
解得x0=2
7、x-4,y0=2y+2,
又(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.
8.(20xx東營(yíng)模擬)已知正方形的四個(gè)頂點(diǎn)分別為O(0,0),A(1,0),B(1,1),C(0,1),點(diǎn)D,E分別在線段OC,AB上運(yùn)動(dòng),且OD=BE,設(shè)AD與OE交于點(diǎn)G,則點(diǎn)G的軌跡方程是( A )
(A)y=x(1-x)(0≤x≤1)
(B)x=y(1-y)(0≤y≤1)
(C)y=x2(0≤x≤1)
(D)y=1-x2(0≤x≤1)
解析:設(shè)D(0,λ),E(1,1-λ)(0≤λ≤1),
所以線段AD方程為x+yλ=1(0≤x≤1),線段OE方程為y=(1-λ)x(0
8、≤x≤1) ,
聯(lián)立方程組x+yλ=1(0≤x≤1),y=(1-λ)x(0≤x≤1)(λ為參數(shù)),消去參數(shù)λ得點(diǎn)G的軌跡方程為y=x(1-x)(0≤x≤1).
二、填空題
9.已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點(diǎn)P的軌跡方程是 .
解析:設(shè)P(x,y),
∵△MPN為直角三角形,
∴|MP|2+|NP|2=|MN|2,
∴(x+2)2+y2+(x-2)2+y2=16,
整理得,x2+y2=4.
∵M(jìn),N,P不共線,
∴x≠2,
∴軌跡方程為x2+y2=4 (x≠2).
答案:x2+y2=4 (x≠2)
10.P是橢圓x2
9、a2+y2b2=1(a>b>0)上的任意一點(diǎn),F1、F2是它的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),OQ→=PF1→+PF2→,則動(dòng)點(diǎn)Q的軌跡方程是 .
解析:OQ→=PF1→+PF2→,
如圖,PF1→+PF2→=PM→=2PO→=-2OP→,
設(shè)Q(x,y),
則OP→=-12OQ→=-12(x,y)=(-x2,-y2),
即P點(diǎn)坐標(biāo)為(-x2,-y2),
又P在橢圓上,
則有(-x2)2a2+(-y2)2b2=1,
即x24a2+y24b2=1.
答案:x24a2+y24b2=1
11.設(shè)x,y∈R,i、j為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,向量a=xi+(y+2
10、)j,b=xi+(y-2)j,且|a|+|b|=8,則點(diǎn)M(x,y)的軌跡方程為 .
解析:由已知得a=(x,y+2),b=(x,y-2),而|a|+|b|=8,故有x2+(y+2)2+x2+(y-2)2=8①,由①式知?jiǎng)狱c(diǎn)M(x,y)到兩定點(diǎn)F1(0,-2),F2(0,2)的距離之和為一常數(shù),滿足橢圓的定義,故M點(diǎn)軌跡為以F1、F2為焦點(diǎn)的橢圓,橢圓的長(zhǎng)半軸長(zhǎng)a=4,所以短半軸長(zhǎng)b=23,故其軌跡方程為x212+y216=1.
答案:x212+y216=1
三、解答題
12.(20xx長(zhǎng)春高三調(diào)研)已知平面上的動(dòng)點(diǎn)P(x,y)及兩個(gè)定點(diǎn)A(-2,0),B(2,0),直線
11、PA,PB的斜率分別為k1,k2且k1k2=-14.
(1)求動(dòng)點(diǎn)P的軌跡C方程;
(2)設(shè)直線l:y=kx+m與曲線 C交于不同兩點(diǎn)M,N,當(dāng)OM⊥ON時(shí),求O點(diǎn)到直線l的距離(O為坐標(biāo)原點(diǎn)).
解:(1)設(shè)P(x,y),
由已知得yx+2yx-2=-14,
整理得x2+4y2=4,
即x24+y2=1(x≠2).
(2)設(shè)M(x1,y1),N(x2,y2)
y=kx+m,x24+y2=1,
消去y得(4k2+1)x2+8kmx+4m2-4=0,
由Δ=(8km)2-4(4k2+1)(4m2-4)>0,
得4k2+1-m2>0.
x1+x2=-8km4k2+1,
x
12、1x2=4m2-44k2+1,
∵OM⊥ON,
∴x1x2+y1y2=0,
即x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=0,
∴(1+k2)4m2-44k2+1+km(-8km4k2+1)+m2=0,
∴m2=45(k2+1)滿足4k2+1-m2>0,
∴O點(diǎn)到l的距離為d=|m|1+k2,
即d2=m21+k2=45,
∴d=255.
13.(20xx高考陜西卷)已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得弦MN的長(zhǎng)為8.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩
13、點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).
(1)解:如圖所示,設(shè)動(dòng)圓圓心O1(x,y),
由題意,|O1A|=|O1M|,
當(dāng)O1不在y軸上時(shí),
過O1作O1H⊥MN交MN于H,
則H是MN的中點(diǎn),
∴|O1M|=x2+42,
又|O1A|=(x-4)2+y2,
∴(x-4)2+y2=x2+42,
化簡(jiǎn)得y2=8x(x≠0).
又當(dāng)O1在y軸上時(shí),O1與O重合,點(diǎn)O1的坐標(biāo)(0,0)也滿足方程y2=8x,
∴動(dòng)圓圓心的軌跡C的方程為y2=8x.
(2)證明:由題意,設(shè)直線l的方程為y=kx+b(k≠0),
P(x1,y1),Q(x2,y2),
14、
將y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0,
其中Δ=-32kb+64>0.
由根與系數(shù)的關(guān)系得,x1+x2=8-2bkk2,①
x1x2=b2k2,②
因?yàn)閤軸是∠PBQ的角平分線,
所以y1x1+1=-y2x2+1,
即y1(x2+1)+y2(x1+1)=0,
(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,
2kx1x2+(b+k)(x1+x2)+2b=0,③
將①②代入③,得2kb2+(k+b)(8-2bk)+2k2b=0,
∴k=-b,此時(shí)Δ>0,
∴直線l的方程為y=k(x-1),
∴直線l過定點(diǎn)(1,0).
能力
15、提升
14.在平行四邊形ABCD中,∠BAD=60,AD=2AB,若P是平面ABCD內(nèi)一點(diǎn),且滿足:xAB→+yAD→+PA→=0(x,y∈R).則當(dāng)點(diǎn)P在以A為圓心,33|BD→|為半徑的圓上時(shí),實(shí)數(shù)x,y應(yīng)滿足關(guān)系式為( D )
(A)4x2+y2+2xy=1 (B)4x2+y2-2xy=1
(C)x2+4y2-2xy=1 (D)x2+4y2+2xy=1
解析:如圖所示,以A為原點(diǎn)建立平面直角坐標(biāo)系,設(shè)AD=2.
據(jù)題意,AB=1,∠ABD=90,
BD=3.
∴B、D的坐標(biāo)分別為(1,0)、(1,3),
∴AB→=(1,0),AD→=(1,3).
設(shè)點(diǎn)P的坐標(biāo)為(m
16、,n),
即AP→=(m,n),
則由xAB→+yAD→+PA→=0,
得:AP→=xAB→+yAD→,
∴m=x+y,n=3y.
據(jù)題意,m2+n2=1,
∴x2+4y2+2xy=1.
15.有一動(dòng)圓P恒過定點(diǎn)F(a,0)(a>0)且與y軸相交于點(diǎn)A、B,若△ABP為正三角形,則點(diǎn)P的軌跡方程為 .
解析:設(shè)P(x,y),動(dòng)圓P的半徑為R,
由于△ABP為正三角形,
∴P到y(tǒng)軸的距離d=32R,
即|x|=32R.
而R=|PF|=(x-a)2+y2,
∴|x|=32(x-a)2+y2.
整理得(x+3a)2-3y2=12a2,
即(x+3a)212a2-
17、y24a2=1.
答案:(x+3a)212a2-y24a2=1
16.(20xx高考廣東卷)已知橢圓C:x2a2+y2b2=1(a>b>0)的一個(gè)焦點(diǎn)為(5,0),離心率為53.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0,y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓C的兩條切線相互垂直,求點(diǎn)P的軌跡方程.
解:(1)依題意得,c=5,e=ca=53,
因此a=3,b2=a2-c2=4,
故橢圓C的標(biāo)準(zhǔn)方程是x29+y24=1.
(2)若兩切線的斜率均存在,設(shè)過點(diǎn)P(x0,y0)的切線方程是y=k(x-x0)+y0,
則由y=k(x-x0)+y0,x29+y24=1,
得x29
18、+[k(x-x0)+y0]24=1,
即(9k2+4)x2+18k(y0-kx0)x+9[(y0-kx0)2-4]=0,
因?yàn)橹本€與橢圓C相切,
所以Δ=[18k(y0-kx0)]2-36(9k2+4)[(y0-kx0)2-4]=0,
整理得(x02-9)k2-2x0y0k+y02-4=0.
又所引的兩條切線相互垂直,設(shè)兩切線的斜率分別為k1,k2,
于是有k1k2=-1,
即y02-4x02-9=-1,
即x02+y02=13(x0≠3).
若兩切線中有一條斜率不存在,則易得x0=3,y0=2或x0=-3,y0=2或x0=3,y0=-2或x0=-3,y0=-2.經(jīng)檢驗(yàn)知均滿足x02+y02=13.
因此,動(dòng)點(diǎn)P(x0,y0)的軌跡方程是x2+y2=13.
探究創(chuàng)新
17.(20xx河南鄭州一模)如圖,△PAB所在的平面α和四邊形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,若
tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是( B )
(A)圓的一部分 (B)橢圓的一部分
(C)雙曲線的一部分 (D)拋物線的一部分
解析:由題意可知PAAD+2PBBC=10,
則PA+PB=40>AB=6,
又因P、A、B三點(diǎn)不共線,
故點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓的一部分.