一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十節(jié) 變化率與導(dǎo)數(shù)、導(dǎo)數(shù)的計(jì)算 Word版含解析
《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十節(jié) 變化率與導(dǎo)數(shù)、導(dǎo)數(shù)的計(jì)算 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十節(jié) 變化率與導(dǎo)數(shù)、導(dǎo)數(shù)的計(jì)算 Word版含解析(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 課時規(guī)范練 A組 基礎(chǔ)對點(diǎn)練 1.曲線y=xex-1在點(diǎn)(1,1)處切線的斜率等于( ) A.2e B.e C.2 D.1 解析:y=xex-1==xex,y′=(ex+xex)=(1+x), ∴k=y(tǒng)′|x=1=2,故選C. 答案:C 2.(20xx濟(jì)南模擬)已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且滿足f(x)=2xf′(1)+ln x,則f′(1)=( ) A.-e B.-1 C.1 D.e 解析:∵f(x)=2xf′(1)+ln x,
2、∴f′(x)=[2xf′(1)]′+(ln x)′=2f′(1)+, ∴f′(1)=2f′(1)+1,即f′(1)=-1. 答案:B 3.函數(shù)f(x)=exsin x的圖象在點(diǎn)(0,f(0))處的切線的傾斜角為( ) A. B. C. D. 解析:因?yàn)閒′(x)=exsin x+excos x,所以f′(0)=1,即曲線y=f(x)在點(diǎn)(0,f(0))處的切線的斜率為1.所以在點(diǎn)(0,f(0))處的切線的傾斜角為,故選C. 答案:C 4.(20xx云南師大附中考試)曲線y=ax在x=0處的切線方程是xln 2+y-1=0,則a=( ) A. B.2 C.ln 2
3、 D.ln 解析:由題知,y′=axln a,y′|x=0=ln a,又切點(diǎn)為(0,1),故切線方程為xln a-y+1=0,∴a=,故選A. 答案:A 5.已知函數(shù)f(x)=sin x-cos x,且f′(x)=f(x),則tan 2x的值是( ) A.- B.- C. D. 解析:因?yàn)閒′(x)=cos x+sin x=sin x-cos x,所以tan x=-3,所以tan 2x===,故選D. 答案:D 6.(20xx貴陽模擬)曲線y=xex在點(diǎn)(1,e)處的切線與直線ax+by+c=0垂直,則的值為( ) A.- B.- C. D. 解析:y′=e
4、x+xex,則y′|x=1=2e,∵切線與直線ax+by+c=0垂直,∴-=-,∴=,故選D. 答案:D 7.(20xx重慶巴蜀中學(xué)模擬)已知曲線y=在點(diǎn)P(2,4)處的切線與直線l平行且距離為2,則直線l的方程為( ) A.2x+y+2=0 B.2x+y+2=0或2x+y-18=0 C.2x-y-18=0 D.2x-y+2=0或2x-y-18=0 解析:y′==-,y′|x=2=-=-2,因此kl=-2,設(shè)直線l方程為y=-2x+b,即2x+y-b=0,由題意得=2,解得b=18或b=-2,所以直線l的方程為2x+y-18=0或2x+y+2=0.故選B. 答案:B 8.已
5、知函數(shù)f(x)在R上滿足f(2-x)=2x2-7x+6,則曲線y=f(x)在(1,f(1))處的切線方程是( ) A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3 解析:法一:令x=1得f(1)=1,令2-x=t,可得x=2-t,代入f(2-x)=2x2-7x+6得f(t)=2(2-t)2-7(2-t)+6,化簡整理得f(t)=2t2-t,即f(x)=2x2-x,∴f′(x)=4x-1,∴f′(1)=3.∴所求切線方程為y-1=3(x-1),即y=3x-2. 法二:令x=1得f(1)=1,由f(2-x)=2x2-7x+6,兩邊求導(dǎo)可得f′(2-x)(2-x)′=
6、4x-7,令x=1可得-f′(1)=-3,即f′(1)=3.∴所求切線方程為y-1=3(x-1),即y=3x-2. 答案:C 9.(20xx濰坊模擬)如圖,y=f(x)是可導(dǎo)函數(shù),直線l:y=kx+2是曲線y=f(x)在x=3處的切線,g(x)=xf(x),g′(x)是g(x)的導(dǎo)函數(shù),則g′(3)=( ) A.-1 B.0 C.2 D.4 解析:由題意知直線l:y=kx+2是曲線y=f(x)在x=3處的切線,由圖可得f(3)=1.又點(diǎn)(3,1)在直線l上,∴3k+2=1,∴k=-,∴f′(3)=k=-.∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x),則g′(
7、3)=f(3)+3f′(3)=1+3=0,故選B. 答案:B 10.已知直線y=-x+m是曲線y=x2-3ln x的一條切線,則m的值為( ) A.0 B.2 C.1 D.3 解析:因?yàn)橹本€y=-x+m是曲線y=x2-3ln x的切線,所以令y′=2x-=-1,得x=1或x=-(舍去),即切點(diǎn)為(1,1),又切點(diǎn)(1,1)在直線y=-x+m上,所以m=2,故選B. 答案:B 11.若冪函數(shù)f(x)=mxα的圖象經(jīng)過點(diǎn)A,則它在點(diǎn)A處的切線方程是( ) A.2x-y=0 B.2x+y=0 C.4x-4y+1=0 D.4x+4y+1=0 解析:由題意知m=1,∴=α
8、,∴α=, ∴f(x)=x,∴f′(x)=,其在A的切線的斜率k=1, ∴f(x)在處的切線方程為y-=x-,即y=x+,故選C. 答案:C 12.(20xx石家莊模擬)設(shè)a∈R,函數(shù)f(x)=ex+ae-x的導(dǎo)函數(shù)是f′(x),且f′(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)為( ) A.ln 2 B.-ln 2 C. D.- 解析:對f(x)=ex+ae-x求導(dǎo)得f′(x)=ex-ae-x,又f′(x)是奇函數(shù),故f′(0)=1-a=0,解得a=1,故有f′(x)=ex-e-x,設(shè)切點(diǎn)為(x0,y0),則f′(x0)=ex0-e-x0=,解得e
9、x0=2或ex0=-(舍去),所以x0=ln 2. 答案:A 13.曲線y=-5ex+3在點(diǎn)(0,-2)處的切線方程為________. 解析:由y=-5ex+3得,y′=-5ex,所以切線的斜率k=y(tǒng)′|x=0=-5,所以切線方程為y+2=-5(x-0),即5x+y+2=0. 答案:5x+y+2=0 14.曲線y=x(3ln x+1)在點(diǎn)(1,1)處的切線方程為____________. 解析:y′=3ln x+1+3=3ln x+4,所以曲線在點(diǎn)(1,1)處的切線斜率為4,所以切線方程為y-1=4(x-1),即y=4x-3. 答案:y=4x-3 15.若曲線y=xln x上
10、點(diǎn)P處的切線平行于直線2x-y+1=0,則點(diǎn)P的坐標(biāo)是________. 解析:設(shè)P(x0,y0).∵y=xln x, ∴y′=ln x+x=1+ln x. ∴k=1+ln x0.又k=2,∴1+ln x0=2,∴x0=e. ∴y0=eln e=e. ∴點(diǎn)P的坐標(biāo)是(e,e). 答案:(e,e) 16.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=f′(1)ex-1-f(0)x+x3,則f(x)=__________. 解析:由f(x)=f′(1)ex-1-f(0)x+x3,得f′(x)=f′(1)ex-1-f(0)+x2.令x=1,得f(0)=1.在f(x)=f′(1
11、)ex-1-f(0)x+x3中,取x=0,得f(0)=f′(1)e-1=1,所以f′(1)=e,所以f(x)=ex-x+x3. 答案:ex-x+ B組 能力提升練 1.已知函數(shù)g(x)=sin x,記f(0)=g(x)=sin x,f(1)=(sin x)′=cos x,f(2)=(cos x)′=-sin x,…依次類推,則f(2 019)=( ) A.sin x B.cos x C.-sin x D.-cos x 解析:由題意得f(3)=-cos x,f(4)=sin x,f (5)=cos x, 周期為4. ∴f(2 019)=f(3)=-cos x,故選D. 答
12、案:D 2.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.已知函數(shù)f(x)=3x+4sin x-cos x的拐點(diǎn)是M(x0,f(x0)),則點(diǎn)M( ) A.在直線y=-3x上 B.在直線y=3x上 C.在直線y=-4x上 D.在直線y=4x上 解析:f′(x)=3+4cos x+sin x,f″(x)=-4sin x+cos x,由題意知4sin x0-cos x0=0, 所以f(x0)=3x0, 故M(x0,f(x0))在直線y=3x上.故選B.
13、 答案:B 3.已知函數(shù)f(x)=ex-2ax,g(x)=-x3-ax2.若不存在x1,x2∈R,使得f′(x1)=g′(x2),則實(shí)數(shù)a的取值范圍為( ) A.(-2,3) B.(-6,0) C.[-2,3] D.[-6,0] 解析:依題意,知函數(shù)f′(x)與g′(x)值域的交集為空集,∵f′(x)=ex-2a>-2a,g′(x)=-3x2-2ax≤,∴≤-2a,解得-6≤a≤0. 答案:D 4.(20xx江西贛中南五校聯(lián)考)已知函數(shù)fn(x)=xn+1,n∈N的圖象與直線x=1交于點(diǎn)P,若圖象在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2 013x1+log2 01
14、3x2+…+log2 013x2 012的值為( ) A.-1 B.1-log2 0132 012 C.-log2 0132 012 D.1 解析:由題意可得點(diǎn)P的坐標(biāo)為(1,1), f′n(x)=(n+1)xn,所以fn(x)圖象在點(diǎn)P處的切線的斜率為n+1,故可得切線的方程為y-1=(n+1)(x-1),所以切線與x軸交點(diǎn)的橫坐標(biāo)為xn=,則log2 013x1+log2 013x2+…+log2 013x2 012=log2 013(x1x2…x2 012)=log2 013=log2 013=-1.故選A. 答案:A 5.(20xx安徽皖南八校聯(lián)考)已知曲線f(x)=
15、-axln x在點(diǎn)(1,f(1))處的切線方程為y=-x++b-1,則下列命題是真命題的個數(shù)為( ) ①?x∈(0,+∞),f(x)<;②?x0∈(0,e),f(x0)=0; ③?x∈(0,+∞),f(x)>;④?x0∈(1,e),f(x0)=. A.1 B.2 C.3 D.4 解析:f′(x)=-a(1+ln x),則f′(1)=-a,又f(1)=,∴曲線在(1,f(1))處的切線方程為y-=-a(x-1),即y=-ax++a,∴a=1,b=2.∴f(x)=-xln x.易知y=在(0,+∞)上的最大值為,y=xln x在(0,+∞)上的最小值為-,∴<xln x+,即f(x
16、)<,①正確,∵f(1)f(e)<0,且f(x)的圖象在(0,e)上連續(xù),∴②正確; ∵f(e)<0,∴③錯誤;由f(1)=,f(e)<0知④正確,即①②④正確. 答案:C 6.設(shè)函數(shù)f(x)=ln x,g(x)=ax+,它們的圖象在x軸上的公共點(diǎn)處有公切線,則當(dāng)x>1時,f(x)與g(x)的大小關(guān)系是( ) A.f(x)>g(x) B.f(x)<g(x) C.f(x)=g(x) D.f(x)與g(x)的大小關(guān)系不確定 解析:由題意得f(x)與x軸的交點(diǎn)(1,0)在g(x)上,所以a+b=0,因?yàn)楹瘮?shù)f(x),g(x)的圖象在此公共點(diǎn)處有公切線,所以f(x),g(x)在此公共
17、點(diǎn)處的導(dǎo)數(shù)相等,f′(x)=,g′(x)=a-,以上兩式在x=1時相等,即1=a-b,又a+b=0,所以a=,b=-,即g(x)=-,f(x)=ln x,令h(x)=f(x)-g(x)=ln x-+,則h′(x)=--==-,因?yàn)閤>1,所以h′(x)<0,所以h(x)在(1,+∞)上單調(diào)遞減,所以h(x)<h(1)=0,所以f(x)<g(x).故選B. 答案:B 7.設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x+ex,則f′(1)=________. 解析:令t=ex,故x=ln t,∴f(t)=ln t+t,即f(x)=ln x+x,∴f′(x)=+1,∴f′(1)=2.
18、答案:2 8.設(shè)曲線y=ex在點(diǎn)(0,1)處的切線與曲線y=(x>0)上點(diǎn)P處的切線垂直,則P的坐標(biāo)為________. 解析:y′=ex,則曲線y=ex在點(diǎn)(0,1)處的切線的斜率k切=1,又曲線y=(x>0)上點(diǎn)P處的切線與曲線y=ex在點(diǎn)(0,1)處的切線垂直,所以曲線y=(x>0)在點(diǎn)P處的切線的斜率為-1,設(shè)P(a,b),則曲線y=(x>0)上點(diǎn)P處的切線的斜率為y′|x=a=-a-2=-1,可得a=1,又P(a,b)在y=上,所以b=1,故P(1,1). 答案:(1,1) 9.已知函數(shù)f(x)=-x3+ax2+b(a,b∈R)圖象上任意一點(diǎn)處的切線的斜率都小于1,則實(shí)數(shù)a的
19、取值范圍是________. 解析:由題意得f′(x)=-3x2+2ax, 當(dāng)x=時,f′(x)取到最大值. ∴<1,解得-<a<. 答案:-<a< 10.已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R). (1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率為-3,求a,b的值. (2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍. 解析:f′(x)=3x2+2(1-a)x-a(a+2). (1)由題意得 解得b=0,a=-3或a=1. (2)因?yàn)榍€y=f(x)存在兩條垂直于y軸的切線, 所以關(guān)于x的方程f′(x)=3x2+2
20、(1-a)x-a(a+2)=0有兩個不相等的實(shí)數(shù)根, 所以Δ=4(1-a)2+12a(a+2)>0, 即4a2+4a+1>0,所以a≠-. 所以a的取值范圍為∪. 11.已知函數(shù)f(x)=x3-4x2+5x-4. (1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程; (2)求經(jīng)過點(diǎn)(2,-2)的曲線的切線方程. 解析:(1)因?yàn)閒′(x)=3x2-8x+5, 所以f′(2)=1,又f(2)=-2, 所以曲線在點(diǎn)(2,f(2))處的切線方程為y+2=x-2,即x-y-4=0. (2)設(shè)曲線與經(jīng)過點(diǎn)A(2,-2)的切線相切于點(diǎn)P(x0,x-4x+5x0-4),因?yàn)閒′(x0)
21、=3x-8x0+5, 所以切線方程為y- (-2)=(3x-8x0+5)(x-2), 又切線過點(diǎn)P(x0,x-4x+5x0-4), 所以x-4x+5x0-2=(3x-8x0+5)(x0-2), 整理得(x0-2)2(x0-1)=0,解得x0=2或1, 所以經(jīng)過A(2,-2)的曲線f(x)的切線方程為x-y-4=0或y+2=0. 12.設(shè)有拋物線C:y=-x2+x-4,過原點(diǎn)O作C的切線y=kx,使切點(diǎn)P在第一象限. (1)求k的值; (2)過點(diǎn)P作切線的垂線,求它與拋物線的另一個交點(diǎn)Q的坐標(biāo). 解析:(1)設(shè)點(diǎn)P的坐標(biāo)為(x1,y1), 則y1=kx1,① y1=-x+x1-4,② ①代入②得,x+x1+4=0. 因?yàn)镻為切點(diǎn), 所以Δ=2-16=0, 得k=或k=. 當(dāng)k=時,x1=-2,y1=-17. 當(dāng)k=時,x1=2,y1=1. 因?yàn)镻在第一象限, 所以所求的斜率k=. (2)過P點(diǎn)作切線的垂線, 其方程為y=-2x+5.③ 將③代入拋物線方程得, x2-x+9=0. 設(shè)Q點(diǎn)的坐標(biāo)為(x2,y2),則2x2=9, 所以x2=,y2=-4. 所以Q點(diǎn)的坐標(biāo)為.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)