金版教程高考數學 文二輪復習講義:第二編 專題整合突破 專題二 函數與導數 第三講 導數的簡單應用 Word版含解析
《金版教程高考數學 文二輪復習講義:第二編 專題整合突破 專題二 函數與導數 第三講 導數的簡單應用 Word版含解析》由會員分享,可在線閱讀,更多相關《金版教程高考數學 文二輪復習講義:第二編 專題整合突破 專題二 函數與導數 第三講 導數的簡單應用 Word版含解析(23頁珍藏版)》請在裝配圖網上搜索。
1、 第三講 導數的簡單應用 必記公式] 1.基本初等函數的八個導數公式 原函數 導函數 f(x)=C(C為常數) f′(x)=0 f(x)=xα(α∈R) f′(x)=αxα-1 f(x)=sinx f′(x)=cosx f(x)=cosx f′(x)=-sinx f(x)=ax(a>0,且a≠1) f′(x)=axln_a f(x)=ex f′(x)=ex f(x)=logax(a>0,且a≠1) f′(x)=logae= f(x)=ln x f′(x)= 2.導數四則運算法則 (1)f(x)g(x)]′=f′(x)g′(x);
2、
(2)f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)′=(g(x)≠0).
重要概念]
1.切線的斜率
函數f(x)在x0處的導數是曲線f(x)在點P(x0,f(x0))處的切線的斜率,因此曲線f(x)在點P處的切線的斜率k=f′(x0),相應的切線方程為y-f(x0)=f′(x0)(x-x0).
2.函數的單調性
在某個區(qū)間(a,b)內,如果f′(x)>0(f′(x)<0),那么函數y=f(x)在這個區(qū)間內單調遞增(單調遞減).
3.函數的極值
設函數f(x)在點x0附近有定義,如果對x0附近所有的點x,都有f(x) 3、數的一個極大值,記作y極大值=f(x0);如果對x0附近的所有的點都有f(x)>f(x0),那么f(x0)是函數的一個極小值,記作y極小值=f(x0).極大值與極小值統(tǒng)稱為極值.
4.函數的最值
將函數y=f(x)在a,b]內的各極值與端點處的函數值f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
失分警示]
1.判斷極值的條件掌握不清:利用導數判斷函數的極值時,忽視“導數等于零,并且兩側導數的符號相反”這兩個條件同時成立.
2.混淆在點P處的切線和過點P的切線:前者點P為切點,后者點P不一定為切點,求解時應先設出切點坐標.
3.關注函數的定義域:求函數的單調區(qū) 4、間及極(最)值應先求定義域.
考點 導數的幾何意義
典例示法
典例1 (1)20xx山東高考]若函數y=f(x)的圖象上存在兩點,使得函數的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質.下列函數中具有T性質的是( )
A.y=sinx B.y=ln x
C.y=ex D.y=x3
解析] 設函數y=f(x)圖象上兩點的橫坐標為x1,x2.由題意知只需函數y=f(x)滿足f′(x1)f′(x2)=-1(x1≠x2)即可.y=f(x)=sinx的導函數為f′(x)=cosx,f′(0)f′(π)=-1,故A滿足;y=f(x)=ln x的導函數為f′(x 5、)=,f′(x1)f′(x2)=>0,故B不滿足;y=f(x)=ex的導函數為f′(x)=ex,f′(x1)f′(x2)=ex1+x2>0,故C不滿足;y=f(x)=x3的導函數為f′(x)=3x2,f′(x1)f′(x2)=9xx≥0,故D不滿足.故選A.
答案] A
(2)20xx陜西高考]設曲線y=ex在點(0,1)處的切線與曲線y=(x>0)上點P處的切線垂直,則P的坐標為________.
解析] y′=ex,則y=ex在點(0,1)處的切線的斜率k切=1,又曲線y=(x>0)上點P處的切線與y=ex在點(0,1)處的切線垂直,所以y=(x>0)在點P處的切線的斜率為-1,設P 6、(a,b),則曲線y=(x>0)上點P處的切線的斜率為y′|x=a=-a-2=-1,可得a=1,又P(a,b)在y=上,所以b=1,故P(1,1).
答案] (1,1)
1.求曲線y=f(x)的切線方程的三種類型及方法
(1)已知切點P(x0,y0),求y=f(x)過點P的切線方程:
求出切線的斜率f′(x0),由點斜式寫出方程.
(2)已知切線的斜率為k,求y=f(x)的切線方程:
設切點P(x0,y0),通過方程k=f′(x0)解得x0,再由點斜式寫出方程.
(3)已知切線上一點(非切點),求y=f(x)的切線方程:
設切點P(x0,y0),利用導數求得切線斜率f′(x 7、0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點斜式或兩點式寫出方程.
2.利用切線(或方程)與其他曲線的關系求參數
已知過某點切線方程(斜率)或其與某線平行、垂直,利用導數的幾何意義、切點坐標、切線斜率之間的關系構建方程(組)或函數求解.
提醒:求曲線的切線方程時,務必分清在點P處的切線還是過點P的切線,前者點P為切點,后者點P不一定為切點,求解時應先求出切點坐標.
針對訓練
1.20xx重慶巴蜀中學模擬]已知曲線y=在點P(2,4)處的切線與直線l平行且距離為2,則直線l的方程為( )
A.2x+y+2=0
B.2x+y+2=0或2x+y-18=0
C. 8、2x-y-18=0
D.2x-y+2=0或2x-y-18=0
答案 B
解析 y′==-,y′|x=2=-=-2,因此k1=-2,設直線l方程為y=-2x+b,即2x+y-b=0,由題意得=2,解得b=18或b=-2,所以直線l的方程為2x+y-18=0或2x+y+2=0.故選B.
2.20xx江蘇高考]在平面直角坐標系xOy中,若曲線y=ax2+(a,b為常數)過點P(2,-5),且該曲線在點P處的切線與直線7x+2y+3=0平行,則a+b的值是________.
答案 -3
解析 ∵y=ax2+,∴y′=2ax-,
由題意可得
解得∴a+b=-3.
考點 利用導數研究函數 9、的單調性
典例示法
題型1 利用導數研究函數的單調性(單調區(qū)間)
典例2 20xx重慶高考]已知函數f(x)=ax3+x2(a∈R)在x=-處取得極值.
(1)確定a的值;
(2)若g(x)=f(x)ex,討論g(x)的單調性.
解] (1)對f(x)求導得f′(x)=3ax2+2x,
因為f(x)在x=-處取得極值,所以f′=0,
即3a+2=-=0,解得a=.
(2)由(1)得g(x)=ex,
故g′(x)=ex+ex
=ex=x(x+1)(x+4)ex.
令g′(x)=0,解得x=0,x=-1或x=-4.
當x<-4時,g′(x)<0,故g(x)為減函數; 10、
當-4 11、解] (1)f′(x)=2mx-1+=,即2mx2-x+1<0在(0,+∞)上有解.
當m≤0時顯然成立;
當m>0時,由于函數y=2mx2-x+1的圖象的對稱軸x=>0,故需且只需Δ>0,即1-8m>0,故0 12、.
則g′(x)=2mx-1+-2m==
.
當m=時,g′(x)≥0,又g(x)不是常數函數,故g(x)在(0,+∞)上單調遞增.
∴函數g(x)有且只有一個零點x=1,滿足題意.
當0 13、∴g>0,故在上,函數g(x)又有一個零點,不符合題意.
綜上所述,m=.
1.導數與單調性之間的關系
(1)導數大(小)于0的區(qū)間是函數的單調遞增(減)區(qū)間.
(2)函數f(x)在D上單調遞增??x∈D,f′(x)≥0且f′(x)在區(qū)間D的任何子區(qū)間內都不恒為零;
函數f(x)在D上單調遞減??x∈D,f′(x)≤0且f′(x)在區(qū)間D的任何子區(qū)間內都不恒為零.
2.根據函數的單調性求參數取值范圍的思路
(1)求f′(x).
(2)將單調性轉化為導數f′(x)在該區(qū)間上滿足的不等式恒成立問題求解.
考點 利用導數研究函數的極值與最值 14、
典例示法
題型1 求函數的極值(最值)
典例4 20xx合肥質檢]已知函數f(x)=e1-x(2ax-a2)(其中a≠0).
(1)若函數f(x)在(2,+∞)上單調遞減,求實數a的取值范圍;
(2)設函數f(x)的最大值為g(a),當a>0時,求g(a)的最大值.
解] (1)由f(x)=e1-x(2ax-a2),
得f′(x)=(e1-x)′(2ax-a2)+2ae1-x=e′(2ax-a2)+2ae1-x=-e1-x(2ax-a2)+2ae1-x=-e1-x(2ax-a2-2a)=0,又a≠0,故x=1+,
當a>0時,f(x)在上為增函數,在上為減函數,∴1+≤2 15、,即a≤2,
∴00時,f(x)max=f=2ae
即g(a)=2ae.
則g′(a)=(2-a)e=0,得a=2,
∴g(a)在(0,2)上為增函數,在(2,+∞)上為減函數,
∴g(a)max=g(2)=.
題型2 知極值的個數求參數范圍
典例5 20xx沈陽質檢]已知函數f(x)=xln x-x2-x+a(a∈R)在其定義域內有兩個不同的極值點.
(1)求a的取值范圍;
(2)記兩個極值點為x1,x2,且x1 16、
解] (1)依題,函數f(x)的定義域為(0,+∞),
所以方程f′(x)=0在(0,+∞)上有兩個不同的根,
即方程ln x-ax=0在(0,+∞)上有兩個不同的根.
解法一:可以轉化為函數y=ln x與函數y=ax的圖象在(0,+∞)上有兩個不同的交點,如圖.
可見,若令過原點且與函數y=ln x圖象相切的直線斜率為k,只需0
17、′(x)>0,
當x>e時,g′(x)<0,
所以g(x)在(0,e)上單調遞增,在(e,+∞)上單調遞減.從而g(x)極大值=g(e)=.
又g(x)有且只有一個零點是1,且在x→0時,g(x)→-∞,在x→+∞時,g(x)→0,
所以g(x)的草圖如圖所示,
可見,要想函數g(x)=與函數y=a的圖象在(0,+∞)上有兩個不同交點,只需00),
若a≤0,可見g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上單調遞增,此時g(x)不可能有
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會全文PPT
- 2025年寒假安全教育班會全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機關工委2024年度年終黨建工作總結述職匯報
- 心肺復蘇培訓(心臟驟停的臨床表現與診斷)
- 我的大學生活介紹
- XX單位2024年終專題組織生活會理論學習理論學習強黨性凝心聚力建新功
- 2024年XX單位個人述職述廉報告
- 一文解讀2025中央經濟工作會議精神(使社會信心有效提振經濟明顯回升)
- 2025職業(yè)生涯規(guī)劃報告自我評估職業(yè)探索目標設定發(fā)展策略
- 2024年度XX縣縣委書記個人述職報告及2025年工作計劃
- 寒假計劃中學生寒假計劃安排表(規(guī)劃好寒假的每個階段)
- 中央經濟工作會議九大看點學思想強黨性重實踐建新功