江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第6講 立體幾何中的向量方法(一)證明平行與垂直課件

上傳人:沈*** 文檔編號(hào):50926101 上傳時(shí)間:2022-01-24 格式:PPT 頁(yè)數(shù):42 大?。?.60MB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第6講 立體幾何中的向量方法(一)證明平行與垂直課件_第1頁(yè)
第1頁(yè) / 共42頁(yè)
江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第6講 立體幾何中的向量方法(一)證明平行與垂直課件_第2頁(yè)
第2頁(yè) / 共42頁(yè)
江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第6講 立體幾何中的向量方法(一)證明平行與垂直課件_第3頁(yè)
第3頁(yè) / 共42頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第6講 立體幾何中的向量方法(一)證明平行與垂直課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第6講 立體幾何中的向量方法(一)證明平行與垂直課件(42頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第第6講立體幾何中的向量方法講立體幾何中的向量方法(一一)證明平行與垂直證明平行與垂直非零向量 2空間位置關(guān)系的向量表示位置關(guān)系向量表示直線l1,l2的方向向量分別為n1,n2.l1l2 n1n2n1n2l1l2n1n2直線l的方向向量為n,平面的法向量為ml nmlnmnm平面,的法向量分別為n,m.nm . nm .n1n2 0 mn0 nm nm0 辨 析 感 悟 1平行關(guān)系(1)直線的方 向向量是唯一確定的()(2)兩不重合直線l1和l2的方向向量分別為v1(1,0,1),v2(2,0,2),則l1與l2的位置關(guān)系是平行()(4)(2014青島質(zhì)檢改編)如圖所示,在正方體ABCDA1B

2、1C1D1中,O是底面正方形ABCD的中心,M是D1D的中點(diǎn),N是A1B1的中點(diǎn),則直線NO,AM的位置關(guān)系是異面垂直 () 感悟提升 1一是切莫混淆向量平行與向量垂直的坐標(biāo)表示,二是理解直線平行與直線方向向量平行的差異,如(2)否則易造成解題不嚴(yán)謹(jǐn) 2利用向量知識(shí)證明空間位置關(guān)系,要注意立體幾何中相關(guān)定理的活用,如證明直線ab,可證向量ab,若用直線方向向量與平面法向量垂直判定線面平行,必需強(qiáng)調(diào)直線在平面外等. 規(guī)律方法 (1)恰當(dāng)建立坐標(biāo)系,準(zhǔn)確表示各點(diǎn)與相關(guān)向量的坐標(biāo),是運(yùn)用向量法證明平行和垂直的關(guān)鍵(2)證明直線與平面平行,只須證明直線的方向向量與平面的法向量的數(shù)量積為零,或證直線的方

3、向向量與平面內(nèi)的不共線的兩個(gè)向量共面,或證直線的方向向量與平面內(nèi)某直線的方向向量平行,然后說(shuō)明直線在平面外即可這樣就把幾何的證明問(wèn)題轉(zhuǎn)化為向量運(yùn)算規(guī)律方法 (1)利用已知的線面垂直關(guān)系構(gòu)建空間直角坐標(biāo)系,準(zhǔn)確寫出相關(guān)點(diǎn)的坐標(biāo),從而將幾何證明轉(zhuǎn)化為向量運(yùn)算其中靈活建系是解題的關(guān)鍵(2)其一證明直線與直線垂直,只需要證明兩條直線的方向向量垂直;其二證明面面垂直:證明兩平面的法向量互相垂直;利用面面垂直的判定定理,只要能證明一個(gè)平面內(nèi)的一條直線的方向向量為另一個(gè)平面的法向量即可規(guī)律方法 立體幾何開(kāi)放性問(wèn)題求解方法有以下兩種:(1)根據(jù)題目的已知條件進(jìn)行綜合分析和觀察猜想,找出點(diǎn)或線的位置,然后再加以

4、證明,得出結(jié)論;(2)假設(shè)所求的點(diǎn)或線存在,并設(shè)定參數(shù)表達(dá)已知條件,根據(jù)題目進(jìn)行求解,若能求出參數(shù)的值且符合已知限定的范圍,則存在這樣的點(diǎn)或線,否則不存在本題是設(shè)出點(diǎn)P的坐標(biāo),借助向量運(yùn)算,判定關(guān)于z0的方程是否有解 1用向量法解決立體幾何問(wèn)題,是空間向量的一個(gè)具體應(yīng)用,體現(xiàn)了向量的工具性,這種方法可把復(fù)雜的推理證明、輔助線的作法轉(zhuǎn)化為空間向量的運(yùn)算,降低了空間想象演繹推理的難度,體現(xiàn)了由“形”轉(zhuǎn)“數(shù)”的轉(zhuǎn)化思想 2兩種思路:(1)選好基底,用向量表示出幾何量,利用空間向量有關(guān)定理與向量的線性運(yùn)算進(jìn)行判斷(2)建立空間坐標(biāo)系,進(jìn)行向量的坐標(biāo)運(yùn)算,根據(jù)運(yùn)算結(jié)果的幾何意義解釋相關(guān)問(wèn)題 3運(yùn)用向量知

5、識(shí)判定空間位置關(guān)系,仍然離不開(kāi)幾何定理如用直線的方向向量與平面的法向量垂直來(lái)證明線面平行,仍需調(diào)直線在平面外 思想方法8運(yùn)用空間向量研究空間位置關(guān)系中的轉(zhuǎn)化思想反思感悟 (1)轉(zhuǎn)化化歸是求解空間幾何的基本思想方法:中將空間位置、數(shù)量關(guān)系坐標(biāo)化和體現(xiàn)了線線垂直與線面垂直的轉(zhuǎn)化,以及將線線垂直轉(zhuǎn)化為向量的數(shù)量積為0.在與中主要實(shí)施線面、線線垂直的轉(zhuǎn)化中把求“平面夾角的余弦值”轉(zhuǎn)化為“兩平面法向量夾角的余弦值”(2)空間向量將“空間位置關(guān)系”轉(zhuǎn)化為“向量的運(yùn)算”應(yīng)用的核心是要充分認(rèn)識(shí)形體特征,建立恰當(dāng)?shù)淖鴺?biāo)系,實(shí)施幾何問(wèn)題代數(shù)化同時(shí)注意兩點(diǎn):一是正確寫出點(diǎn)、向量的坐標(biāo),準(zhǔn)確運(yùn)算;二是空間位置關(guān)系中判定定理與性質(zhì)定理?xiàng)l件要完備

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲