《吉林省長(zhǎng)市榆樹市弓棚鎮(zhèn)七年級(jí)數(shù)學(xué)下冊(cè) 6.3 實(shí)踐與探索(第1課時(shí))課件 (新版)華東師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《吉林省長(zhǎng)市榆樹市弓棚鎮(zhèn)七年級(jí)數(shù)學(xué)下冊(cè) 6.3 實(shí)踐與探索(第1課時(shí))課件 (新版)華東師大版(19頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、華東師大版七年級(jí)下冊(cè)第第6 6章章 一元一次方程一元一次方程 父親的羊越來越多,想拆舊羊圈擴(kuò)父親的羊越來越多,想拆舊羊圈擴(kuò)大面積,可是沒有多余的籬笆,怎么辦大面積,可是沒有多余的籬笆,怎么辦呢?他叫來了兒子呢?他叫來了兒子, ,兒子不慌不忙地說:兒子不慌不忙地說:“爸,我有辦法爸,我有辦法”?!澳憧?,舊羊圈長(zhǎng)你看,舊羊圈長(zhǎng)7070米,寬米,寬3030米,面積米,面積21002100平平方米。如果改成長(zhǎng)寬都是方米。如果改成長(zhǎng)寬都是5050米米的新羊圈,不用添籬笆,羊圈的新羊圈,不用添籬笆,羊圈面積就有面積就有25002500平方米平方米”。 你能解釋嗎你能解釋嗎? ? xx32等量關(guān)系:等量關(guān)系
2、:(長(zhǎng)(長(zhǎng)+ +寬)寬) 2= 2=鐵絲長(zhǎng)鐵絲長(zhǎng)所要圍成的圖形的周長(zhǎng)所要圍成的圖形的周長(zhǎng)=鐵絲的長(zhǎng)度鐵絲的長(zhǎng)度請(qǐng)寫出詳細(xì)的過程!請(qǐng)寫出詳細(xì)的過程!小明又想用這小明又想用這6060厘米長(zhǎng)鐵絲圍成另外厘米長(zhǎng)鐵絲圍成另外一個(gè)長(zhǎng)方形,使長(zhǎng)方形的寬比長(zhǎng)少一個(gè)長(zhǎng)方形,使長(zhǎng)方形的寬比長(zhǎng)少4 4厘厘米,此時(shí)長(zhǎng)方形的長(zhǎng)、寬各為多少?米,此時(shí)長(zhǎng)方形的長(zhǎng)、寬各為多少?它所圍成的長(zhǎng)方形與第一次所圍成的它所圍成的長(zhǎng)方形與第一次所圍成的長(zhǎng) 方 形 相 比 , 面 積 有 什 么 變 化 ?長(zhǎng) 方 形 相 比 , 面 積 有 什 么 變 化 ?( (xx4) 4) 2 =602 =60解得:解得: x= =1717寬為:寬
3、為: 17174=4=1313(厘米)(厘米) 面積為:面積為: 17171313221221(平方厘米)(平方厘米) 即長(zhǎng)方形的長(zhǎng)為即長(zhǎng)方形的長(zhǎng)為1717厘米厘米, ,寬為寬為1313厘米厘米, ,面積為面積為221221平方厘米平方厘米, ,它比第一次所圍它比第一次所圍的長(zhǎng)方形的面積增大了的長(zhǎng)方形的面積增大了. . 若將上題中的若將上題中的“長(zhǎng)方形的寬比長(zhǎng)少長(zhǎng)方形的寬比長(zhǎng)少4 4厘米厘米”改為改為3 3厘米、厘米、2 2厘米、厘米、1 1厘米、厘米、0 0厘米(即長(zhǎng)與寬相等),長(zhǎng)方形的面厘米(即長(zhǎng)與寬相等),長(zhǎng)方形的面積有什么變化?積有什么變化? 將一個(gè)底面直徑是將一個(gè)底面直徑是1010厘
4、米厘米, ,高為高為3636厘米的厘米的 “ “瘦長(zhǎng)瘦長(zhǎng)”形圓柱形圓柱鍛壓鍛壓成底面直成底面直徑為徑為2020厘米的厘米的“矮胖矮胖”形圓柱,高變形圓柱,高變成了多少?成了多少?鍛壓前鍛壓前鍛壓后鍛壓后底面半底面半徑徑高高體體 積積 5 5厘米厘米 1010厘米厘米 3636厘米厘米 x 厘米厘米 2536210 x 根據(jù)等量關(guān)系,列出方程:根據(jù)等量關(guān)系,列出方程:解方程得:解方程得: x=9因此,高變成了因此,高變成了 厘米。厘米。 9等體積變形等體積變形問題關(guān)鍵問題關(guān)鍵2222 5 5 36=36= 10 10 x x 要解此類問題,應(yīng)首先找準(zhǔn)要解此類問題,應(yīng)首先找準(zhǔn)不不變的量變的量,才能
5、,才能“以不變應(yīng)萬變以不變應(yīng)萬變”。1.等積變形等積變形:變形前的體積變形前的體積=變形后的體積變形后的體積3.尋找不變量尋找不變量, 以不變應(yīng)萬變。以不變應(yīng)萬變。2.等周長(zhǎng)變形等周長(zhǎng)變形:變形前的周長(zhǎng)變形前的周長(zhǎng)=變形后圖形的周長(zhǎng)變形后圖形的周長(zhǎng) 小明的爸爸想用小明的爸爸想用1010米鐵絲在墻邊米鐵絲在墻邊圍成一個(gè)雞棚,使長(zhǎng)比寬大圍成一個(gè)雞棚,使長(zhǎng)比寬大4 4米,問米,問小明要幫他爸爸圍成的雞棚的長(zhǎng)和寬小明要幫他爸爸圍成的雞棚的長(zhǎng)和寬各是多少呢?各是多少呢?鐵絲鐵絲墻面墻面xx+4 若小明用若小明用1010米鐵絲在墻邊圍成一個(gè)長(zhǎng)米鐵絲在墻邊圍成一個(gè)長(zhǎng)方形雞棚,使長(zhǎng)比寬大方形雞棚,使長(zhǎng)比寬大5
6、 5米,但在寬的一米,但在寬的一邊有一扇邊有一扇1 1米寬的門,那么,請(qǐng)問小明圍米寬的門,那么,請(qǐng)問小明圍成的雞棚的長(zhǎng)和寬又是多少呢?成的雞棚的長(zhǎng)和寬又是多少呢?門門墻面墻面鐵絲鐵絲2.在一個(gè)底面直徑在一個(gè)底面直徑5厘米、高厘米、高18厘米的圓柱形瓶?jī)?nèi)裝厘米的圓柱形瓶?jī)?nèi)裝滿水滿水,再將瓶?jī)?nèi)的水倒入一個(gè)底面直徑再將瓶?jī)?nèi)的水倒入一個(gè)底面直徑6厘米、高厘米、高10厘厘米的圓柱形玻璃杯中米的圓柱形玻璃杯中,能否完全裝下能否完全裝下?若裝不下若裝不下,那么瓶那么瓶?jī)?nèi)水面還有多高內(nèi)水面還有多高?若未能裝滿若未能裝滿,求杯內(nèi)水面離杯口距離求杯內(nèi)水面離杯口距離.185610所以玻璃杯不能完全裝下所以玻璃杯不能
7、完全裝下.解解:圓柱形瓶?jī)?nèi)裝水圓柱形瓶?jī)?nèi)裝水:185 . 2210325 .11290(厘米厘米3 )(厘米厘米3 )圓柱形玻璃杯可裝水圓柱形玻璃杯可裝水:設(shè)設(shè):瓶?jī)?nèi)水面還有瓶?jī)?nèi)水面還有 厘米高厘米高,則則xx25 . 2905 .112x25. 6,5 .22,25. 65 .22x6 . 3x答答:玻璃杯不能完全裝下玻璃杯不能完全裝下,瓶?jī)?nèi)水面還有瓶?jī)?nèi)水面還有 3.6 厘米高厘米高.3.將棱長(zhǎng)為將棱長(zhǎng)為20cm的正方體鐵塊鍛造成一的正方體鐵塊鍛造成一個(gè)長(zhǎng)為個(gè)長(zhǎng)為100cm,寬為,寬為5cm的長(zhǎng)方體鐵塊,的長(zhǎng)方體鐵塊,求長(zhǎng)方體鐵塊的高度求長(zhǎng)方體鐵塊的高度?解:解:設(shè)長(zhǎng)方體鐵塊的高度為設(shè)長(zhǎng)方體
8、鐵塊的高度為x cm .依據(jù)題意,得方程依據(jù)題意,得方程1005x=202020解得:解得:x=16 答:長(zhǎng)方體鐵塊的高度為答:長(zhǎng)方體鐵塊的高度為16 cm.4.將棱長(zhǎng)為將棱長(zhǎng)為6cm的正方體鐵塊沒入盛的正方體鐵塊沒入盛水量筒中,已知量筒底面積為水量筒中,已知量筒底面積為12cm2,問量筒中水面升高了多少問量筒中水面升高了多少cm?解:解:設(shè)量筒中水面升高了設(shè)量筒中水面升高了x cm .依據(jù)題意,得方程依據(jù)題意,得方程12x=666x=18 答:答:量筒中水面升高了量筒中水面升高了18cm.5.將一個(gè)裝滿水的內(nèi)部長(zhǎng)、寬、高分別為將一個(gè)裝滿水的內(nèi)部長(zhǎng)、寬、高分別為300毫米,毫米,300毫米和毫
9、米和80毫米的長(zhǎng)方體鐵毫米的長(zhǎng)方體鐵盒中的水,倒入一個(gè)內(nèi)徑為盒中的水,倒入一個(gè)內(nèi)徑為200毫米的圓毫米的圓柱形水桶中,正好倒?jié)M,求圓柱形水桶柱形水桶中,正好倒?jié)M,求圓柱形水桶的高?(精確到的高?(精確到0.1毫米,毫米,3.14).解:解:設(shè)圓柱形水桶的高為設(shè)圓柱形水桶的高為x毫米,依題意,毫米,依題意,得得(200/2)2x=30030080 x229.3答:答:圓柱形水桶的高約為圓柱形水桶的高約為229.3毫米毫米.6.有一梯形和長(zhǎng)方形,如圖,梯形的上、下底邊有一梯形和長(zhǎng)方形,如圖,梯形的上、下底邊的長(zhǎng)分別為的長(zhǎng)分別為6cm,2cm,高和長(zhǎng)方形的寬都等于,高和長(zhǎng)方形的寬都等于3cm,如果梯形和長(zhǎng)方形的面積相等,那么圖中,如果梯形和長(zhǎng)方形的面積相等,那么圖中所標(biāo)所標(biāo)x的長(zhǎng)度是多少的長(zhǎng)度是多少?